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Supplementary Methods 
1 Study introduction 

Section authors: Richard Karlsson Linnér, K. Paige Harden, and Danielle M. Dick 
The externalizing spectrum is a constellation of co-occurring behaviors and disorders that are 
characterized by under-controlled or impulsive action1,2. Central externalizing behaviors include 
aggression, delinquency, and conduct problems3. It has been observed that childhood 
externalizing precedes various health-risk behaviors later in life, such as smoking, drinking, and 
illicit substance use4. Externalizing psychopathology encompasses multiple clinical diagnoses 
across development5, including attention deficit hyperactivity disorder (ADHD), conduct 
disorder (CD), oppositional defiant disorder (ODD), antisocial personality disorder (ASPD), 
alcohol dependence (AD), and other substance use disorders (SUDs). Considered together, 
externalizing behaviors and disorders impose a significant public health burden6–8. 
Multiple twin and family studies have found that much of the genetic influence on any one 
externalizing disorder is broadly shared with other externalizing spectrum traits and with 
personality traits that are characterized by behavioral disinhibition or low self-control9,10. For 
example, nearly 70% of the heritability of alcohol dependence is suggested to operate via a 
general externalizing disposition, rather than via genes specific to alcohol dependence11. Here, 
we broadly refer to a range of clinical and non-clinical traits related to the externalizing spectrum 
as “externalizing phenotypes” (a detailed working definition is given below). 
Previous efforts to identify specific genes involved in a general externalizing liability have been 
hampered by limited sample size. To surpass that limitation, here we performed multivariate 
analyses of large-scale genome-wide association studies (GWAS) on externalizing phenotypes 
with the goals of (a) estimating a genetic factor structure underlying the externalizing spectrum, 
(b) identifying single-nucleotide polymorphisms (SNPs) and genes primarily involved in a 
shared genetic liability to externalizing rather than genes that are unique to specific externalizing 
phenotypes, and (c) increasing the accuracy of polygenic scores for specific externalizing traits 
that are intractable to study in large samples. The current study was performed according to a 
preregistered analysis plan, the first version of which was time-stamped on November 8, 2018 
(https://doi.org/10.17605/OSF.IO/XKV36). 

1.1 Study summary 

In this section, we report a brief and illustrative overview of the study procedure, while the 
remainder of this Supplementary Information thoroughly describes all methods and results. 
The study procedure can broadly be categorized into three major stages:  

Stage 1. We amassed a set of phenotype-specific GWAS summary statistics for different 
externalizing phenotypes, either by collecting existing results or by performing GWAS in 
UK Biobank (UKB)12 (Supplementary Information section 2). The multivariate 
method “genomic structural equation modelling” (Genomic SEM)13 was applied on a 
subset of the summary statistics (N = 53,293–1,251,809) deemed adequately heritable and 
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statistically powered, in order to estimate a series of model specifications representing 
different genetic factor structures (Supplementary Information section 3). The best-
fitting and most parsimonious solution (“the preferred model specification”) specified a 
single common genetic factor with seven indicator phenotypes (which we hereafter refer 
to as “the latent genetic externalizing factor”, or simply, “the externalizing factor”). We 
estimated genetic correlations between the externalizing factor and 91 other traits from 
various research domains. Our main discovery analysis is a GWAS on the latent genetic 
externalizing factor, which we henceforth refer to as “the externalizing GWAS” (𝑁"## = 
1,492,085). The externalizing GWAS results were first clumped and then subjected to 
“conditional and joint multiple-SNP analysis” (GCTA-COJO) to identify a set of “579 
jointly associated lead SNPs”, which we consider to be our main GWAS findings. 

Stage 2. The results of the externalizing GWAS were utilized to perform proxy-phenotype 
analyses of antisocial behavior and alcohol use disorder14 (Supplementary Information 
section 4). Similarly, the results were used for polygenic score analyses of a variety of 
behavioral, health, criminal justice, and substance use measures15, including a phenome-
wide association study (PheWAS) of electronic-health records in the biorepository of the 
Vanderbilt University Medical Center (BioVU)16,17 (Supplementary Information 
section 5). 

Stage 3. Bioannotation of the externalizing GWAS was performed with the methods 
“functional mapping and annotation of genetic associations” (FUMA)18, “multi-marker 
analysis of genomic annotation” (MAGMA)19, “Hi-C coupled MAGMA” (H-
MAGMA)20, and “S-PrediXcan”21,22 (Supplementary Information section 6). 



2 GWAS on externalizing phenotypes 
Section authors: Richard Karlsson Linnér and Travis T. Mallard 

This section, Supplementary Information section 2, details the procedure to gather and 
generate GWAS summary statistics that were later used as input phenotypes in our Genomic 
SEM analyses (Supplementary Information section 3). In summary of this section, the analysis 
plan delineated a detailed working definition of externalizing phenotypes (including both 
behaviors and disorders) that we considered to be suitable candidates to represent individual 
differences in externalizing liability. Based on this definition, on November 8, 2018, we 
preregistered a set of existing GWAS summary statistics that we had identified in a search of the 
published GWAS literature. We also specified for inclusion a couple of ongoing studies that we 
were aware of but that were not yet published. Also, to increase the number of potential input 
phenotypes, the analysis plan specified that we would perform GWAS on four externalizing 
phenotypes in UKB, and we excluded a subset of UKB participants from all discovery stage 
summary statistics to be withheld for follow-up analyses (see below). A quality-control protocol 
was applied to keep only high-quality single-nucleotide polymorphisms (SNPs). Lastly in this 
section, we applied LD Score regression to evaluate the power of the GWAS signal, SNP 
heritability, and the extent of confounding bias from population stratification23,24, in order to 
select an adequately powered and heritable subset of summary statistics (N = 53,293–1,251,809) 
that were retained to be used for multivariate analyses with Genomic SEM. 

2.1 Definition of externalizing phenotypes 

Psychiatric disorders are commonly comorbid with one another25. Patterns of psychiatric 
comorbidity can be parsimoniously represented in terms of latent factors – statistical entities that 
are not directly observed and that represent broad groupings of disorders that are particularly 
likely to be comorbid with one another, both contemporaneously and across the lifespan26. Factor 
models of clinically-defined disorders typically differentiate between internalizing (characterized 
by maladaptive fear and withdrawal, such as major depressive disorder or generalized anxiety 
disorder) and externalizing disorders (characterized by under-controlled or impulsive behavior, 
such as attention deficit/hyperactivity disorder)5,27. 
The psychiatric disorders of childhood in which the cardinal symptoms are under-controlled or 
impulsive behaviors are (1) attention deficit hyperactivity disorder (ADHD), (2) conduct disorder 
(CD), and (3) oppositional defiant disorder (ODD). Previous twin research has found evidence 
for shared genetic influences on these disorders28–30. CD, in turn, has been extensively 
investigated vis-à-vis other psychiatric disorders of adulthood. For example, history of CD in 
childhood or adolescence is a requirement for a Diagnostic and Statistical Manual (DSM-5) 
diagnosis of antisocial personality disorder (ASPD), and twin studies have found evidence for 
genetic overlap between CD and/or ASPD and substance use disorders (SUDs), including 
alcohol dependence, nicotine dependence, and drug dependence1,11,31,32. There is evidence that 
CD represents an earlier developmental manifestation of the genetic predisposition that impacts 
SUDs at a later developmental period once there is increased access to alcohol and other 
drugs33,34. 
Informed by previous multivariate twin research, our analyses therefore aimed to include GWAS 
of the following psychiatric disorders: ADHD, CD, ODD, ASPD, and SUDs. In addition to 
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clinically-defined disorders, we also consider GWAS of self-reported symptoms of these 
disorders. Previous genetic research on ADHD has found evidence for strong genetic overlap 
between clinically-defined disorders and quantitative symptom variation within the general 
population35. In the case of SUDs, we also aimed to include GWAS of alcohol and other drug 
use initiation, as well as quantity/frequency measures of consumption, which show considerable 
genetic overlap with SUD problems36.  
Further, individuals with externalizing disorders engage in higher rates of health risk behaviors, 
including reckless driving and risky sexual behavior37. Previous twin research has found that 
driving while drunk, earlier age at first sex, and measures of riskier sex are all genetically 
correlated with antisocial behaviors38–40, and the same literature has also found evidence that 
genetic liability to externalizing is indexed by the personality traits of novelty seeking, sensation 
seeking, lack of agreeableness, and lack of conscientiousness1,11,28,41. Therefore, we also aimed 
to include GWAS on risky behaviors or personality. Finally, based on the externalizing 
literature42–45, the analysis plan listed GWAS on educational attainment and smoking initiation as 
two traits that could potentially proxy for genetic externalizing liability, with the advantage of 
being available in huge GWAS samples46,47. 
Putting these lines of psychiatric, psychometric, developmental, and epidemiological research 
together, our analyses aimed to broadly include GWAS of externalizing disorders and their 
symptoms, as well as measures of substance use, health risk behaviors, and personality traits. We 
refer to this category of traits as externalizing phenotypes. In the following sections, we report 
the externalizing phenotypes that we included in the Genomic SEM analyses. 

2.1.1 Excluded phenotypes 

While we took an inclusive approach to phenotype selection, there are several categories of 
psychological/psychiatric phenotypes extraneous to the externalizing spectrum that we did not 
consider. These are briefly outlined with examples below. 

• Neurodevelopmental and obsessive-compulsive disorders 
o Examples: autism spectrum disorder, obsessive-compulsive disorder, Tourette 

syndrome, dyslexia. 
o Note: While ADHD is often conceptualized as a neurodevelopmental disorder, it 

is also conceptualized as a disruptive behavioral disorder and a core externalizing 
disorder. Thus, it will be included in analyses. 

• Psychotic disorders and symptoms 

o Examples: schizophrenia, bipolar disorder, mania, psychosis. 

• Affective disorders and symptoms 
o Examples: major depressive disorder, anxiety disorder, tiredness, loneliness, 

mood swings. 
o Note: Irritability is a non-specific trait/symptom that will be included in analyses. 

While it is affective in nature, it is highly relevant to the externalizing spectrum, 
as it is present in many disorders such as ADHD, oppositional defiant disorder, 
conduct disorder, substance use disorder, antisocial personality disorder, etc. 
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• Trauma and stressor-related disorders and symptoms 
o Examples: posttraumatic stress disorder, witness to traumatic experiences, victim 

of sexual or physical violence, combat exposure. 

• Eating disorders and related pathology 

o Examples: anorexia nervosa, binge eating, obesity. 

2.2 Collecting GWAS on externalizing phenotypes 

Supplementary Table 1 reports all GWAS on externalizing phenotypes that we considered as 
potential candidates for inclusion in Genomic SEM. To find these GWAS results, we searched 
several prominent online GWAS repositories based on the above definition of externalizing 
phenotypes, restricted to studies in European-ancestry samples with N > 15,000. The search was 
conducted in the following resources: the NHGRI-EBI GWAS Catalog48,49, the LD Hub database 
of the Broad Institute50, and the repositories of the Genetics of Personality Consortium (GPC)51 
and the Psychiatric Genomics Consortium (PGC)52, in the month of June, 2018. Also, we sent 
out invitations to collaborate addressed to the principal investigators of ongoing studies that we 
were aware of but that were not yet published. The following research consortia or institutes 
kindly contributed results from their at-the-time ongoing research efforts (the references refer to 
the now published studies): the PGC53,54, the GWAS and Sequencing Consortium of Alcohol and 
Nicotine use (GSCAN)47, the Million Veterans Program (MVP)55, and the International Cannabis 
Consortium (ICC)56.  
In addition, 23andMe kindly shared GWAS results that they had contributed to ongoing or 
published studies on impulsivity (the “Barratt Impulsiveness Scale”, BIS; and the “Urgency, 
Premeditation (lack of), Perseverance (lack of), Sensation Seeking, Positive Urgency, Impulsive 
Behavior Scale”, UPPS-P), alcohol use disorder identification test (AUDIT), delay discounting, 
marijuana initiation (referred to here as “lifetime cannabis use”), and drug experimentation47,56–60. 
However, the sample sizes of most of these GWAS were relatively small (N ~ 20,328–23,127), 
and only lifetime cannabis use was later included as an indicator phenotype in Genomic SEM, as 
part of a meta-analysis with other study cohorts that contributed to a recent GWAS, by the ICC56. 
Nonetheless, we instead utilized the other summary statistics with smaller sample size to 
estimate genetic correlations with the latent externalizing factor (Supplementary Information 
section 3). Also, 23andMe shared their contribution to the GSCAN Consortium’s recent GWAS 
meta-analysis on lifetime smoking initiation (among other drinking and smoking phenotypes), 
and lifetime smoking initiation was included as an indicator in Genomic SEM. 
Beyond collecting existing GWAS, we also performed GWAS in UKB on four externalizing 
phenotypes that were considered for inclusion in Genomic SEM: (1) addictive behaviors, (2) age 
at first sex, (3) Alcohol Use Disorder Identification Test Problem scores (AUDIT-P), and (4) 
irritability. Of note, we defined two UKB Hold-out cohorts of individuals that were excluded 
from all GWAS included in Genomic SEM, which were instead analyzed in the proxy-phenotype 
and polygenic score analyses (Supplementary Information sections 4–5). We give a detailed 
definition of the UKB Hold-out cohorts below. In other words, from the four aforementioned 
GWAS, as well as from any of the existing GWAS (or GWAS meta-analysis) that had analyzed 
UKB data, we excluded the held-out participants (and their genetic relatives) by re-estimating the 
existing GWAS (or GWAS meta-analysis) using the same phenotype definition as in the original 
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study. See below for details on the GWAS protocol we applied in UKB. This procedure applies 
to the following existing GWAS that were considered for inclusion: automobile speeding 
propensity9, drinks per week9, educational attainment46, lifetime cannabis use56, lifetime smoking 
initiation47, general risk tolerance9, and number of sexual partners9.  
After applying our quality-control protocol and meta-analysis (described below) 
(Supplementary Table 2), but before performing analyses with Genomic SEM, we decided to 
exclude a few GWAS because of negligible heritability or GWAS association signal. We did this 
to avoid zeros on the diagonal of the genetic covariance matrix (SLDSC), as well as noise in the 
sampling covariance matrix (VS) which could have negatively influenced the precision of the 
Genomic SEM analyses13. Specifically, we excluded addictive behaviors because the genetic 
variance component (pseudo-h2) estimated with BOLT-LMM (see below) was not statistically 
distinguishable from zero61; and we excluded GWAS for which we estimated (a) LD Score 
regression h2 less than 0.05 and/or (b) GWAS mean 𝜒% less than 1.05. In summary, the following 
GWAS summary statistics were excluded because of not satisfying either or both of these 
conditions: the Barratt Impulsiveness Scale (BIS-11), the UPPS-P Impulsive Behavior Scale, 
drug experimentation59, delay discounting60, and Alcohol Use Disorders Identification Test Total 
score (AUDIT-T)57,58, by 23andMe; as well as agreeableness and conscientiousness by the 
GPC62. After deciding about these exclusions, we amended and registered a second version of 
the analysis plan (OSF March 29, 2019) before proceeding with any further analyses. 
Further, the second version of the analysis plan specified that we would meta-analyze GWAS 
summary statistics on Alcohol Use Disorder Identification Test Consumption scores (AUDIT-C) 
and alcohol use disorder (AUD), which were contributed by MVP, with other alcohol-related 
phenotypes with which they were highly genetically correlated, in order to avoid redundant 
elements and rank deficiency in the empirical genetic covariance matrix of Genomic SEM 
(SLDSC). However, we identified that their results included a smaller than expected number of 
SNPs after applying our quality-control protocol. Specifically, only about 3.9 million SNPs 
remained after quality control (the number of SNPs in the other indicator GWAS ranged from 
6.4–9.5 million). Thus, including the MVP GWAS as indicators in Genomic SEM would have 
drastically restricted the number of SNPs in the externalizing GWAS. Also, as we explain in 
Supplementary Information section 3, non-problematic drinking phenotypes (such as AUDIT-
C) were initially considered for inclusion in the exploratory Genomic SEM analysis, but non-
problematic drinking phenotypes were not retained in our preferred model specification. These 
issues led to the decision to exclude the two MVP GWAS from the discovery stage, and we 
instead preregistered in the third and final version of the analysis plan (OSF October 28, 2019) 
that we would retain the summary statistics on AUD for proxy-phenotype analyses 
(Supplementary Information section 4). 
Notably, we only succeeded to identify a single childhood externalizing disorder that satisfied 
our primary sample-size threshold (N > 15,000): a GWAS on ADHD by the PGC (N = 53,293)53, 
which emphasizes how limited the samples sizes are of studies on this constellation of childhood 
behavioral disorders. Thus, we did not include neither CD nor ODD as indicators in Genomic 
SEM, as we had originally intended. Also, we identified a published GWAS on broad antisocial 
behavior by the Broad Antisocial Behavior Consortium (N = 16,400)63, which is a central 
externalizing phenotype in adulthood. However, to be able to evaluate whether the externalizing 
GWAS could actually tag genetic signal for a central externalizing trait that was not included in 
the discovery stage, we preregistered that we would exclude antisocial behavior from the 
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discovery stage, and that we would instead use these summary statistics for proxy-phenotype 
analyses (Supplementary Information section 4). With respect to SUDs, our search could only 
identify adequately-sized GWAS on alcohol dependence or alcohol use disorder, as well as 
lifetime cannabis use, but no other adequately-sized GWAS on SUDs or drug initiation 
measures. 
At this stage, we had collected or generated eleven phenotype-specific GWAS (or GWAS meta-
analysis) summary statistics that satisfied our inclusion criteria and were forwarded for an 
exploratory analysis with Genomic SEM (Supplementary Table 3): (1) ADHD (N = 53,293), 
(2) age at first sexual intercourse (N = 357,187), (3) problematic alcohol use (N = 164,684), (4) 
automobile speeding propensity (N = 367,151), (5) alcoholic consumption (drinks per week; N = 
375,768), (6) educational attainment (N = 725,186), (7) lifetime cannabis use (N = 186,875), (9) 
lifetime smoking initiation (N = 1,251,809), (9) general risk tolerance (N = 426,379), (10) 
irritability (N = 388,248), and (11) number of sexual partners (N = 336,121). In Supplementary 
Information section 3, we describe a series of exploratory and confirmatory Genomic SEM 
analyses that led to the preferred model specification, in which we narrowed down the selection 
to seven out of the eleven indicators: (1) ADHD, (2) age at first sexual intercourse, (3) 
problematic alcohol use, (4) lifetime cannabis use, (5) lifetime smoking initiation, (6) general 
risk tolerance, and (7) number of sexual partners, which were eventually used to estimate the 
latent genetic externalizing factor. In Supplementary Table 4, we report a summary of all 
individual study cohorts there were part of the final seven GWAS meta-analyses. We 
approximated a lower bound of the number of independent observations to be 1,373,240, by 
summing the maximum number of samples contributed by a particular study cohort to either of 
the seven final GWAS meta-analyses. This should be considered a conservative estimate, as it is 
likely that non-overlapping samples from the same study cohort were contributed to the different 
GWAS based on phenotype availability. 

2.2.1 Conceptual advances to previous GWAS on externalizing phenotypes 

In a recent GWAS effort by some of the authors9, genetically correlated measures of self-
reported willingness to take risks (general risk tolerance) and four real-world risky behaviors 
(automobile speeding propensity, drinks per week, number of sexual partners, and smoking 
initiation) were analyzed. Here, we build upon that earlier work. These previously studied traits 
were all considered here to be externalizing phenotypes, and thus, eligible for inclusion in 
Genomic SEM (see Supplementary Information section 2.1). We make the following advances 
in the current study: 
First, it is important to note the conceptual differences between risk tolerance and externalizing. 
Risk tolerance can be thought of as a facet of externalizing, but externalizing also includes 
various psychiatric disorders, normative and abnormal behaviors, and other personality traits 
(e.g., callous and unemotional traits). Hence, the analyses described here reflect an effort to 
study a much broader construct of human behavior, psychology, health, and well-being, to 
identify a cross-cutting genetic liability that is general to problems with self-control. 
Second, while large-scale single-trait GWAS have been performed on several externalizing 
phenotypes (e.g., smoking and drinking), our literature review revealed that virtually no 
adequately powered GWAS are available for several central externalizing outcomes, such as 
antisocial personality disorder. This study attempts to bridge that gap by collecting and 
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leveraging the extensive degree of genetic overlap among all externalizing phenotypes we could 
identify to have been studied in large GWAS, and then applying a multivariate GWAS 
framework to estimate SNP effects on a shared genetic liability to externalizing, rather than the 
individual traits. We demonstrate here that this approach is of great benefit to studying the 
genetic architecture of externalizing disorders that are unavailable in large samples and would 
otherwise remain elusive.  
Third, in our previous study9, we applied two types of multivariate analyses: (1) a GWAS on the 
first principal component of four risk taking behaviors in the UKB (N = 315,894), and (2) an 
MTAG64 analyses of GWAS summary statistics for general risk tolerance, adventurousness, 
automobile speeding propensity, drinks per week, ever being a smoker, and the self-reported 
number of sexual partners across the lifespan. The aim of MTAG is not to identify general 
associations that are broadly related to all input phenotypes (that is the aim of our current study), 
but rather to augment phenotype-specific summary statistics. Thus, these prior analyses used 
different methods, a different set of phenotypes, and a noticeably smaller GWAS sample size 
compared to the present study. The effective sample size of our current study is about 58% larger 
than our previous study on general risk tolerance (N = 939,908)9, 20% larger than the largest 
input GWAS (smoking initiation; N = 1,251,809), and 28 times larger than the smallest (ADHD; 
N = 53,293). This leads to a substantial increase in the number of genome-wide significant loci 
that we can report here (Supplementary Information section 3.5), as well as a substantial increase 
in the accuracy of polygenic scores that can be derived from the GWAS results (Supplementary 
Information section 5).  
Thus, our current study investigates a partly different set of phenotypes using a different method 
and a much larger sample size. As a result, we are able to report here novel genetic associations 
for many phenotypes and substantially improved polygenic scores, including scores for several 
traits that remained elusive to previous GWAS efforts.   

2.3 GWAS protocol in UKB 

2.3.1 Phenotype definitions 

To complement the existing GWAS we collected, we performed GWAS on four externalizing 
phenotypes in UKB: addictive behaviors, age at first sexual intercourse, AUDIT-P, and 
irritability. The phenotypes were defined in the following way: 
Addictive behaviors 

The addictive behaviors phenotype was defined with the following survey item: 
“Have you been addicted to or dependent on one or more things, including substances (not 
cigarettes/coffee) or behaviours (such as gambling)?” 
The response options were (1) “Prefer not to answer”, (2); “Do not know”, (3); “No”; and (4) 
“Yes”. We excluded participants who answered “Prefer not to answer” or “Do not know”, and 
those who answered “Yes” or “No” were coded as cases (Ncases = 7,689) or controls (Ncases = 
122,893), respectively. However, this GWAS was excluded from any further analysis because 
GWAS with linear mixed models estimated a genetic variance component (pseudo-h2) that was 
not statistically distinguishable from zero61. 
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Age at first sexual intercourse 
The age at first sexual intercourse phenotype has previously been studied in the first release of 
the UKB genetic data, see refs.9,65, but to our knowledge, not in the full release. The phenotype 
definition has previously been described in depth in ref.9. In summary, the measure was 
constructed with the following survey item:  
“What was your age when you first had sexual intercourse? (Sexual intercourse includes 
vaginal, oral or anal intercourse)” 
The respondents were requested to specify an age in full years, and the answers were 
subsequently subjected to three validity checks: (a) reject answers less than 3; (b) reject answers 
greater than participant age; and (c) ask for confirmation for answers less than 12a. This GWAS 
included 357,187 participants and it remained an indicator in the preferred model specification. 
AUDIT-P 
The measure AUDIT-P was defined with 7 items in the Alcohol Use Disorder Identification 
Test, for more details see ref. 58. This measure is only available for a subset of UKB participants, 
as part of the online mental health follow-up66. This GWAS (N = 130,999) was later meta-
analyzed with a PGC GWAS on alcohol dependence (N = 33,685, excluding our follow-up study 
cohorts: Add Health and COGA)54. This GWAS meta-analysis, which we call “problematic 
alcohol use” (N = 164,684), remained an indicator in the preferred model specification. 

Irritability 
The inclusion of irritability is based on the rationale that angry/irritable mood is a core symptom of 
ODD in childhood and is typical of aggressive behavior in adulthood67 The irritability phenotype 
was defined with the following survey item in UKB, previously studied in ref.68: 
“Are you an irritable person?” 
The response options consist of (1) “Prefer not to answer”, (2) “Do not know”, (3) “No”, and (4) 
“Yes”. We excluded participants who answered “Prefer not to answer” or “Do not know”, and 
those who answered “Yes” or “No” were coded as 1 or 0, respectively. Then, because there are 
repeated measures available for this item, we averaged each person’s response across the 
measures, similar to previous efforts9. This GWAS included 388,248 participants, and it was an 
indicator in the exploratory Genomic SEM analyses, but not in the final model specification. 

2.3.2 Definition of the UKB Hold-out cohorts 

We preregistered that we would define two partly overlapping hold-out samples with UKB 
participants: (1) the UKB Siblings Hold-out cohort and (2) the UKB Problematic Alcohol Use 
                                                
a The protocol in ref.9 that we followed “dropped […] an age of first sexual encounter at less than 12 (given the high 
likelihood of associated abuse or misreporting).” However, this particular filter was by mistake not applied in the 
GWAS we conducted here of age at first sexual intercourse. As a robustness check, we conducted this GWAS again 
while applying the filter, which removed 1,154 observations (new N = 356,033). We found that the LD Score 
genetic correlation between the two sets of results was not statistically distinguishable from unity (rg ~ 1, SE = 
0.001). As the results are virtually indistinguishable apart from the small difference in N (–0.3%), we decided it was 
not motivated to re-run Genomic SEM, the externalizing GWAS, and the extensive set of follow-up analyses. 
Importantly, all follow-up analyses, such as polygenic score analyses in Add Health, COGA and UKB-siblings, 
correctly excluded observations of age at first sex below age 12. 
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Hold-out cohort, which were to be excluded from all GWAS used as indicators in Genomic 
SEM. Instead, the held-out participants were retained to be used for proxy-phenotype 
(Supplementary Information section 4) and polygenic score analyses (Supplementary 
Information section 5). In addition, to avoid overfitting because of relatedness across the 
discovery and follow-up stages, we also excluded from further analysis anyone genetically 
related to the held-out individuals (pairwise KING coefficient ≥ 0.0442). The two UKB Hold-out 
cohorts were defined in the following way: 
UKB Siblings Hold-out. We defined this hold-out cohort as all participants with at least one full 
sibling in the UKB. We thereafter kept respondents that (i) passed the UKB genotype sample 
quality control, described in ref.12, (ii) were of European ancestry. After applying these filters, 
we excluded any family unit for which only one sibling had passed the two filters (this step 
removed 295 family units with only one remaining sibling). In total, we retained 39,640 full 
siblings of European ancestry, divided across 19,252 family units. Thus, most family units in 
UKB only observe data on two siblings, no matter the true underlying family size. The UKB 
Siblings Hold-out cohort allowed us to perform within-family polygenic score analyses with 
family-specific intercepts (Supplementary Information section 5). 
UKB Problematic Alcohol Use Hold-out. We defined this hold-out cohort based on a working 
definition of problematic alcohol use, which was defined as having either an ICD diagnosis 
(ICD10: F10.X – Mental and behavioral disorders due to use of alcohol; ICD9: 291.X – 
Alcoholic psychoses, 303.X – Alcohol dependence syndrome, 305.0X – Nondependent abuse of 
alcohol), or self-reported alcohol addiction or dependence (UKB data-fields 20404, 20406, 
20415). We identified 4,400 non-sibling cases of problematic alcohol use that (i) passed the 
UKB genotype sample quality control12, (ii) were of European ancestry. These cases were then 
pooled with a randomly drawn sibling from each family unit (which could be either a case or 
control). In this hold-out cohort, we also included the 295 single-sibling family units which we 
excluded from the UKB Siblings Hold-out cohort. We performed GWAS in the final sample of 
4,630 cases and 19,334 controls using our UKB GWAS protocol, described below. The summary 
statistics from this GWAS were never considered for inclusion in Genomic SEM, but were 
instead generated to be used for proxy-phenotype analyses (Supplementary Information 
section 4). 

2.3.3 Estimating genetic PCs to adjust for population stratification 

To account for population stratification, as is standard in genetic epidemiology69,70, we included 
40 genetic principal components (PCs) as covariates in all GWAS estimated in UKB. Many 
recent studies have relied on the pre-supplied PCs, described in ref.12. But because there are 
recent reports on potential residual population structure when adjusting for the pre-supplied 
PCs71, we instead re-estimated the PCs in a genetically more homogenous sample to better 
capture subtle population stratification in UKB, by using the software flashPCA2 (version 2.0)72. 
Our procedure is similar to the method described in ref.12, but with a narrower inclusion of 
ancestries. In summary, we re-estimated the PCs using the intersection of individuals that (a) had 
been used in the original estimation, which had been determined to be unrelated and had passed 
all sample-level quality control, and (b) that had been determined to be of “White British” 
ancestry based on their self-reports, as well as the investigation of ancestry performed internally 
by the UKB organization. Thus, at this stage we considered 337,545 individuals for inclusion, 
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while the pre-supplied PCs had instead been estimated with 407,219 individuals of which 69,674 
individuals were not of “White British” ancestry. The latter approach can lead to that the first 
few PCs tend to capture the largest differences across major ancestral groups rather than the 
subtler stratification within them69,70. 
Next, we applied SNP and sample quality-control with PLINK (version 1.90b6.13), using 
thresholds similar to those recommended in refs.12,73 (i.e., we used directly genotyped SNPs 
outside of long-range LD regions that were filtered on minor allele frequency ≥ 0.01, genotyping 
call rate ≥ 0.02, and a Hardy-Weinberg equilibrium threshold ≥ 5×10–6, and samples were 
filtered on missingness rate ≥ 0.05). After this step, there were 322,886 individuals remaining. 
Next, we applied LD pruning (window size = 1000 kb; variant step-size = 50; r2 ³ 0.05; with the 
PLINK “indep-pairwise” flag, ref.74) to produce a set of 77,355 independent markers before 
estimating the first 40 principal components. We exported the SNP-loadings for each PC, and the 
projected the remaining of the 459,635 individuals that self-reported to be “White”, “White 
British”, “White Irish”, and “Any other white background”, which also included any related 
individuals that were excluded from the estimation. 

2.3.4 GWAS 

We performed GWAS with linear mixed models (LMM) as implemented in the BOLT-LMM 
software (version 2.3.2)61. The method corrects for a genetic variance component (pseudo-h2), 
which was estimated using a set of 483,680 directly genotyped, autosomal SNPs that passed the 
genotype quality-control described in ref.12. These SNPs had also been filtered on minor allele 
frequency (MAF) greater than 0.005, Hardy-Weinberg-Equilibrium (HWE) P value greater than 
10–16, and light LD-pruning (window size = 50 kb; variant step-size = 5; r2 ³ 0.9; ref.74). 
The GWAS excluded participants (1) that were part of the UKB Hold-out samples (and any 
relatives, pairwise KING (version 2.1.5) coefficient ≥ 0.0442); (2) that did not self-report to 
categorize their ethnic background as “White”, “White British”, “White Irish”, or “Any other 
white background”; (3) whose self-reported sex did not correspond to their genetic sex; (4) that 
had putative sex chromosome aneuploidy or (5) that did not pass the UKB sample quality-control 
thresholds, described in detail in ref.12; and (6) with missing observations with respect to the 
outcome or model control variables. 
The GWAS included control variables for sex, birth year, sex-specific birthyear dummies, 
genotyping batch (and effectively array), and the first 40 genetic PCs (that we had estimated 
ourselves). In practice, we first regressed the phenotype on the covariates with OLS, and then 
applied GWAS on the residuals from that regression. This approach has been shown to lead to 
virtually identical results and is nonetheless performed as an initial step in the BOLT-LMM 
estimating procedure to reduce runtime and computational requirement61. We analyzed the third 
release of the UKB imputed genotype data (UKB), which was imputed by first prioritizing 
variants available in the Haplotype Reference Consortium (HRC) reference panel75, and 
secondly, with variants available in a merged reference panel across the 1000 Genomes and 
UK10K12,75–77, which were not available in the HRC reference panel. 
In summary, we performed GWAS of the following externalizing phenotypes in UKB (some of 
which were used as a replacement in meta-analysis to exclude our two UKB Hold-out cohorts 
from the discovery stage): (1) age at first sexual intercourse (N = 357,187), (2) automobile 
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speeding propensity (N = 367,151), (3) drinks per week (N = 375,768), (4) educational 
attainment (N = 401,024), (5) general risk tolerance (N = 390,934), (6) lifetime cannabis use (N = 
131,862), (7) lifetime smoking initiation (N = 403,349), (8) irritability (N = 388,248), (9) number 
of sexual partners (N = 336,121), (10) addictive behaviors (N = 130,582; excluded because of 
zero pseudo-h2), and (11) AUDIT-P (N = 130,999). We performed all GWAS with males and 
females together. As our main discovery analysis is a GWAS on the latent genetic externalizing 
factor, we do not report GWAS findings for any of the single-phenotype analyses, except with 
respect to quality control and LD Score regression analyses, described in the next section. 

2.4 Quality control analyses 

2.4.1 Main reference panel 

For the purpose of performing quality control and calculating LD between SNPs, we assembled a 
whole-genome sequenced reference panel (hereafter called “the main reference panel”). The 
main reference panel is a combination of a subset of European-ancestry samples in the 1000 
Genomes phase 3 version 5 reference panel77, together with the British UK10K reference 
panel76. The main reference panel is thus very similar to the reference panel that was used to 
impute SNPs in UKB that were not available in HRC, as described in ref.12. As we discuss 
below, the main reference panel can substitute for the HRC, as about 90% of common and low-
frequency SNPs overlap between the two, and since the vast majority of samples in the HRC are 
of European ancestry. 
We assembled the main reference panel in the following way. The publicly archived 1000 
Genomes phase 3 version 5 whole-genome sequencing data (October 2014 haplotype release) 
was downloaded from a public FTP server hosted by the 1000 Genomes Project Consortiumb. 
The restricted-access UK10K whole-genome sequencing data was downloaded after an 
application procedure (request-ID 10099) from the European Bioinformatics Institute (EMBL-
EBI) European Genome-phenome Archive (EGA). Both datasets had already undergone strict 
quality control, which has previously been described in depth, see refs. 76,77. The WGS data 
consisted of variant call format (VCF) files. We used the software BCFtools (version 1.3.1)c, for 
all VCF processing, which is distributed by the Sanger Institute. Genomic positions, as well as 
reference and alternative alleles, were aligned to the Genome Reference Consortium (GRC) 
human build 37 reference sequence 78. 
Before merging the datasets, similar to other efforts79, we first restricted the 1000 Genomes 
samples to samples belonging to either of the three European subpopulations (1) Utah Residents 
with Northern and Western European Ancestry (CEU), (2) Toscana in Italy (TSI), or (3) British 
in England and Scotland (GBR), after which 297 samples remained. The UK10K samples are 
virtually all from the GBR ancestral group76. We then restricted both reference panels to bi-
allelic SNPs with MAF greater than 0. Based on recommendations in ref.79, we removed SNPs 
that were inconsistent between the 1000 Genomes phase 1 version 3 and phase 3 version 5 
releases of the reference data. Specifically, we removed 5,112 SNPs with inconsistent reference 
and alternative alleles (e.g., G/C in phase 1 and G/A in phase 3), as well as 10,513 SNPs with 

                                                
b ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/). 
c http://samtools.github.io/bcftools/ 
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large differences in reference allele frequency (i.e., those exceeding 0.25), which is indicative of 
flipped reference allele or other potential strand issues. 
Next, we merged the datasets per chromosome, and then concatenated the chromosomes across 
the two datasets. Using PLINK v.1.9b3.2980, we converted the VCF data to PLINK binary 
format. We restricted the sample to exclude one member of each pair of individuals with 
genomic relatedness greater than 0.025 (based on 18,270,102 autosomal bi-allelic SNPs with 
MAF > 0 that were available for all individuals), after which 3,780 out of 4,078 individuals 
remained, and we applied filters to remove monomorphic SNPs (i.e. SNPs with MAF = 0). We 
also removed multi-allelic SNPs without retaining any of them as bi-allelic markers, and we 
removed the aforementioned SNPs with inconsistent alleles or large differences in allele 
frequency between 1000 Genomes phase 1 and phase 3. Finally, we removed 3,429 SNPs for 
which the absolute value of the difference in reference allele frequency was greater than 0.25 
between 1000 Genomes phase 3 and the merged reference panel, as an extra precaution against 
misattributed reference alleles. 
In summary, after performing these steps, the main reference panel consisted of 3,780 unrelated, 
European-ancestry samples, merged across the 1000 Genomes phase 3 version 5 and UK10K 
Consortium reference panels. The main reference panel covers 46,518,418 bi-allelic SNPs, out of 
which 9,739,256 are autosomal with MAF greater than 0.005. Of the latter, 8,337,793 are among 
the 9,283,216 autosomal SNPs with MAF greater than 0.005 in a quality-controlled version of 
the HRC, described in ref.9. Thus, among SNPs that would pass our preregistered MAF-filter 
(MAF > 0.005, see next section), the main reference panel includes about 90% of the common 
and low-frequency SNPs available in the HRC, suggesting that the main reference panel can be 
considered a reasonable substitute. 

2.4.2 Quality-control protocol of GWAS summary statistics 

We applied a stringent quality-control protocol with the EasyQC software (version 9.2), which is 
developed by the GIANT consortium81. The protocol is similar to that developed in recent 
GWAS efforts by the Social Science Genetic Association Consortium (SSGAC)9,46, while a few 
aspects of the protocol were modified to align with the Genomic SEM pre-processing step. The 
main aim was to ensure that only high-quality SNPs were used in the multivariate analyses with 
Genomic SEM. Also, an important step of the protocol is to align the effect-coded alleles of the 
input summary statistics to match the non-reference (or alternative) allele reported in the main 
reference panel, in order to ensure that the direction of effect is consistent across the summary 
statistics prior to any meta- or multivariate analysis. To exclude variants from further analysis (in 
case these filters had not already been applied prior to or during GWAS analysis, or in the 
quality control already performed by the contributing study cohorts), we applied the following 
filters in chronological order to drop: 

1. (i) insertions and deletions (INDELs); (ii) SNPs with missing values for the SNP 
identifier, the effect-coded and other allele, the association P value, the effect-size or its 
standard error, the effect-coded allele frequency, the sample size, as well as the 
imputation status or quality; and (iii) SNPs with non-sensical values that were outside of 
the defined variable range (such as P values below zero or above one). 

2. SNPs that did not satisfy MAF equal to or greater than 0.005. 

3. SNPs with an IMPUTE imputation quality (INFO) score82 less than 0.9. 
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4. multi-allelic SNPs, as well as SNPs with duplicated chromosome and base pair positions. 
5. SNPs that could not be successfully mapped to the main reference panel. 

6. SNPs for which the reported alleles did not match those in the main reference panel. 
The result of this filtering of the GWAS summary statistics is reported in Supplementary Table 
2. For brevity, we only report the results for summary statistics that were eventually considered 
for inclusion in Genomic SEM. After applying these filters, we investigated several standard 
diagnostic plots, such as QQ-plots and allele frequency plots, a procedure that has been described 
in detail elsewhere9,79. We found that the allele frequencies reported in the GWAS summary 
statistics correlated strongly with the main reference panel (r ~ 0.999–1), which alleviates 
concerns about strand issues and suggests that the summary statistics and the main reference 
panel match in terms of genetic ancestry. The number of SNPs that deviated more than 0.2 from 
the reference allele frequency in the main reference panel was trivial (0–3,620), and these were 
retained for further analyses. 

2.5 Meta-analysis and LD Score regression 

We used the METAL software (versions 2011-03-25 & 2020-05-05)83 to perform sample-size 
weighted meta-analysis to either (a) mimic an existing GWAS meta-analysis that had included 
UKB data and from which we excluded individuals to create the UKB Hold-out cohorts, or (b) to 
meta-analyze similar phenotypes to avoid redundant elements and rank deficiency in the 
empirical genetic covariance matrix of Genomic SEM (SLDSC). The following externalizing 
phenotypes were meta-analyzed to remove the UKB Hold-out cohorts from an existing GWAS 
meta-analysis: educational attainment, general risk tolerance, lifetime cannabis use, lifetime 
smoking initiation. In the final version of the analysis plan (OSF October 28, 2019), we only 
specified a single GWAS meta-analysis to avoid redundant elements in the genetic covariance 
matrix. That is, we meta-analyzed a GWAS on alcohol dependence by the PGC54 with our own 
GWAS on AUDIT-P in UKB (rg = 0.794), which we named “problematic alcohol use”. 
Next, as the final step before performing analyses with Genomic SEM (Supplementary 
Information section 3), we applied LD Score regression (version 1.0.0) on the GWAS summary 
statistics to (1) estimate SNP-heritability (h2), (2) evaluate the GWAS signal (mean χ2), and (3) 
assess the extent of confounding bias from population stratification by evaluating the LD Score 
regression intercept and attenuation ratio (described in detail elsewhere, see refs.23,24). In 
Supplementary Table 3, we report the LD Score regression estimates for the eleven phenotypes 
for which we estimated h2 and mean χ2 greater than 0.05 and 1.05, respectively, and thus, 
considered for inclusion in Genomic SEM. The eleven indicators were weakly to moderately 
heritable (h2 ~ 0.053–0.235), showed strong to substantial GWAS signal (mean χ2 = 1.267–
3.152). The intercepts ranged from 1.013 to 1.126, and excluding smoking initiation they ranged 
from 1.013 to 1.047.  The attenuation ratio, which is defined as (Intercept – 1) / (mean χ2 – 1), 
ranged from 0.0299 to 0.1129. Taken together, these latter statistics suggest that only a very 
small proportion of the GWAS signal can be attributed to confounding bias from population 
stratification, and that a vast majority of the signal is due to polygenic effects. 
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2.5.1 Investigation of sample overlap 

While designing the study, we judged that the underlying studies by the PGC, GSCAN, ICC, and 
SSGAC had carefully ensured that there was no sample overlap between the study cohorts they 
had meta-analyzed (all underlying study cohorts are reported in Supplementary Table 4). Thus, 
at that time, we did not consider correcting the meta-analyses we (re-)conducted for sample 
overlap. An overview of the meta-analyses we ran is reported in column E in Supplementary 
Table 1. Nonetheless, as was suggested by a Referee, we investigated for sample overlap to the 
extent possible without having access to most of the underlying cohort-level summary statistics. 
Among the final seven phenotypes in Genomic SEM, four are meta-analyses that we performed: 
ALCP, CANN, RISK, SMOK, and the meta-analysis of ADHD was performed solely by the 
PGC. For the former four, we estimated cross-trait (or rather “cross-cohort” in this particular 
exercise) LD Score regression intercepts to evaluate sample overlap between the summary 
statistics available to us. In all cases, the intercepts were precisely estimated (SE ~ 0.006–0.01), 
and in no case could we identify an intercept greater than zero: all intercepts ranged from –0.001 
to 0.005. In other words, we did not identify any evidence to motivate adjusting for sample 
overlap in the meta-analyses we conducted with METAL. 

 



3 Genomic structural equation modeling 
Contributing authors: Travis T. Mallard and Richard Karlsson Linnér 

Genomic structural equation modeling (Genomic SEM, versions 0.0.2a-c)13 is a recent statistical 
method that can model the shared and unique genetic architecture of complex traits by applying 
conventional structural equation modeling principles to GWAS summary statistics. The 
method’s multivariate framework is robust to sample overlap, sample-size imbalance84, and 
allows for greater flexibility and accuracy in specifying and estimating genetic covariance 
matrices relative to other methods, with the advantage of not requiring individual-level genetic 
data. Thus, Genomic SEM allows for the discovery of connections between phenotypes not 
naturally studied together because they span different domains, fields of study, or life stages. In 
the present study, we applied Genomic SEM to investigate the multivariate genetic architecture 
of the externalizing spectrum by jointly analyzing up to 11 indicator phenotypes (ordered by 
abbreviation): attention deficit/hyperactivity disorder (ADHD), problematic alcohol use (ALCP), 
lifetime cannabis use (CANN), drinks per week (DRIN), automobile speeding propensity 
(DRIV), educational attainment (reverse-codedd; EDUC), age at first sexual intercourse (reverse-
coded; FSEX), irritability (IRRT), number of sexual partners (NSEX), general risk tolerance 
(RISK), and lifetime smoking initiation (SMOK). For details on how we selected specifically 
these 11 indicators, see Supplementary Information section 2. The aim of the analyses 
reported in this section is three-fold: (i) to identify the genetic factor structure that best represents 
the genetic architecture of externalizing liability, (ii) to estimate the effects of individual SNPs 
on the latent factor(s), and (iii) to evaluate whether the estimated SNP effects are homogenous 
across the discovery phenotypes with respect to the latent factor(s). 

3.1 Hierarchical clustering 

Hierarchical clustering is a type of cluster analysis that aims to partition features of a dataset into 
groups, where group membership is determined by within-group features that are similar to one 
another and dissociable from features in other groups85. Cluster analysis can serve as a precursor 
to structural equation modeling by empirically guiding model specification decisions in factor 
analysis84. The initial preregistered analysis plan (November 8, 2018) specified that we would 
apply hierarchical clustering to guide the decision of how many factors we would explore in 
subsequent analyses with Genomic SEM. To this end, prior to any structural equation modeling, 
we applied a hierarchical clustering algorithm to a matrix of pair-wise genetic correlations (rg) 
for the 11 phenotypes, estimated with LD Score regression23,24. Specifically, we applied the 
Ward hierarchical clustering algorithm85, as implemented in the hclust function included in the R 
software environment. The results are reported in Supplementary Table 5. The 11 phenotypes 
displayed moderate-to-substantial genetic overlap with at least one other phenotype (max |rg| = 
0.245–0.773), and the average |rg| across all pairwise correlations was 0.323. The algorithm 
identified three clusters to be present in the matrix (ordered by abbreviation within each cluster): 
 

1. Attention deficit/hyperactivity disorder (ADHD), educational attainment (EDUC), age at 
first sexual intercourse (FSEX), irritability (IRRT), and smoking initiation (SMOK). 

                                                
d We reversed the effect sizes in the GWAS summary statistics for educational attainment and age at first sexual 
intercourse so that we could anticipate positive genetic correlations between these traits with externalizing liability. 
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2. Problematic alcohol use (ALCP), drinks per week (DRIN). 
3. Lifetime cannabis use (CANN), automobile speeding propensity (DRIV), number of 

sexual partners (NSEX), general risk tolerance (RISK). 
 
After identifying three clusterse, we updated and timestamped the preregistered study protocol 
before proceeding (March 29, 2019). Following the initial preregistered analysis plan (November 
8, 2018), these new empirical results led us to test four different factor solutions in the 
exploratory factor analysis, specifying 1...k + 1 factors, where k corresponds to the number of 
clusters identified in the genetic correlation matrix. 

3.2 Factor analysis 

Factor analysis is a multivariate statistical technique used to explain variance and covariance 
among sets of observed, correlated variables in terms of unobserved latent factors 86. By 
modeling the shared variance amongst observed variables as higher-order latent factors, factor 
analysis is a useful technique for reducing dimensionality of data and accounting for 
measurement error in observed variables. Factor analysis of genetic correlation matrices is 
identical to factor analysis of any other type of observed covariance matrix, in which 𝑘 observed 
variables are described as linear functions of 𝑚 latent variables, such that the model can be 
expressed as 
 

𝑦 = Λη + 𝜀 
 
where 𝑦 is a 𝑘	 × 	1 vector of observed variables, 𝜀 is a 𝑘	 × 	1 vector of observed variable 
residuals, η is a 𝑚	 × 	1 vector of latent variables, and Λ is a 𝑘	 × 	𝑚 matrix of factor loadings 
that relate the observed variables to the latent variables. 
 
Here, we used the factanal function of R (“stats” package version 3.5.1) to conduct an 
exploratory factor analysis of the genetic correlation matrix (estimated with the ldsc function of 
Genomic SEM) with promax rotation. Results for the exploratory factor analysis are presented in 
Supplementary Table 6. Guided by the hierarchical clustering results described above, we 
estimated four exploratory factor solutions, specifying between one to four latent factors to 
capture the observed genetic covariance amongst our 11 phenotypes, while retaining factors that 
explained at least 15% of the variance (a preregistered threshold). As the fourth factor explained 
only 12.5% of the variance, the three-factor solution was identified as the most appropriate 
exploratory factor model.  
 
The pattern of factor loadings estimated with the three-factor model was largely in concordance 
with the results of the hierarchical clustering. Based on the observed loadings, we broadly 
characterized the three factors as (i) adult risk-taking phenotypes, on which lifetime cannabis use 
(CANN), automobile speeding propensity (DRIV), number of sexual partners (NSEX), and 
general risk tolerance (RISK) loaded strongly (λ = 0.534–0.885); (ii) developmentally-relevant 

                                                
e The second version of the analysis plan (March 29, 2019) reported a preliminary cluster analysis that included the 
MVP study cohort. Here we report the most recent analysis that excludes MVP (see Supplementary Information 
section 2), which also identified three clusters with similar membership as those identified in the preliminary 
analysis. 
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phenotypes, on which ADHD, educational attainment (EDUC), and age at first sex (FSEX) 
loaded strongly (λ = 0.811–0.966); and (iii) drinking phenotypes, on which problematic alcohol 
use (ALCP) and drinks per week loaded strongly (λ ~ 0.784–1.003). Lifetime smoking initiation 
loaded most strongly with (ii) (λ = 0.472), but also moderately with (i) (λ = 0.347). Among the 
phenotypes, irritability (IRRT) displayed the weakest factor loadings (the strongest loading was 
with (iii), λ = 0.187), and substantial unique variation (0.927), which is in accordance with it 
being the weakest genetically correlated across the 11 phenotypes (max |rg| = 0.245). These 
findings suggest that the irritability phenotype may not be optimal for modeling the externalizing 
spectrum, even though it displayed satisfying heritability and GWAS signal. Also, the results of 
the exploratory analysis suggest that it is unlikely that a single common factor model will be able 
to closely approximate the observed genetic covariance matrix of the 11 phenotypes. 

3.3 Structural equation modeling 

Structural equation modeling is a statistical framework that encompasses an array of modeling 
and methodological approaches for explaining the variance and covariance structure among sets 
of variables. While the mathematical background and many applications of structural equation 
modeling are extensive (see refs.86,87 for a review), we briefly review below several fundamental 
principles and how they relate to the Genomic SEM framework. 
 
Structural equation models can be represented as a pair of equations: the measurement model, 
which describes how observed variables relate to latent variables, and the structural model, 
which describes how latent variables relate to one another13. As in exploratory factor analysis, 𝑘 
observed variables are described as linear functions of 𝑚 continuous latent variables. In 
confirmatory factor analysis, this is referred to as the measurement model, which is expressed 
analogous to the above equation 
 

𝑦 = Λη + 𝜀 
 
By contrast, a structural model is specified when theory is used to model the associations 
between latent variables via directed regression coefficients. The structural model can be 
expressed as  
 

η = Bη + ζ 
 
where B is a 𝑚	 × 	𝑚 matrix of regression coefficients that relate latent variables to one another 
and ζ is a 𝑚	 × 	1 vector of latent variable residual variances. In this full structural equation 
model, the observed sample covariance matrix is represented by a set of parameters that relates 
observed variables to latent variables, and latent variables to each other in a series of linear 
equations.   
 
Genomic SEM leverages the above framework to model the genetic covariances between a set of 
observed phenotypes. Using a two-stage approach, the genetic covariance matrix (S) and the 
sampling covariance matrix (𝑉4) are estimated (Stage 1), and a structural equation model is then 
estimated by minimizing misfit between the model-implied and empirical genetic covariances 
(Stage 2). To estimate the genetic covariance matrix and its associated sampling covariance 
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matrix, Genomic SEM uses a multivariable form of LD Score regression. 𝑆 is a symmetric 
matrix of order 𝑘, where k equals the number of observed phenotypes, with diagonal elements 
representing SNP heritabilities and off-diagonal elements representing genetic covariances 
between phenotypes. Comprised of  𝑘∗ = 7(79:)

%
 nonredundant elements, 𝑆 can be written as 
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To obtain unbiased estimates of test statistics and standard errors, the nonredundant elements in 
the S matrix are then used to construct the asymptotic sampling covariance matrix of the LD 
Score regression estimates, 𝑉4. The matrix 𝑉4 is symmetric of order 𝑘∗, in which diagonal 
elements are sampling variances and off-diagonal elements are sampling covariances. Thus, it 
can be written as 
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The diagonal elements of 𝑉4 are then estimated with a jackknife resampling procedure analogous 
to the procedure used in the original bivariate version of LD Score regression. 
 
The 𝑆 matrix from Stage 1 is then used in Stage 2 to estimate the parameters of the specified 
structural equation model with either weighted least squares (WLS) or maximum likelihood 
(ML) estimators. The estimators minimize misfit between the model-implied and empirical 
genetic covariances, but differ in how information is weighted (see 13 for further detail). A 
sandwich correction that incorporates the sampling covariance matrix is used to obtain unbiased 
standard errors and corresponding test statistics. In this study, all models were estimated using 
WLS estimation, as described in ref.13, in which a fit function is optimized using the diagonal 
elements of 𝑉4, standard errors are subsequently adjusted using the off-diagonal elements of 𝑉4.  
 
Importantly, the off-diagonal elements of 𝑉4 index to what extent the sampling errors across the 
summary statistics correlate. Thus, just like its predecessor LD Score regression24,88, Genomic 
SEM has been shown to be unbiased and robust to varying degrees of, or even complete, sample 
overlap13. Also, the method is capable of handling differences in GWAS sample size. These are 
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important properties, as large-scale GWAS summary statistics are often generated as meta-
analyses that span several biobanks and cohort studies. 

3.3.1 Confirmatory factor analysis 

Confirmatory factor analysis is a common application of structural equation modeling, where the 
observed covariances among a set of observed variables are modeled according to both theory 
and exploratory data inspection. Competing models are tested to identify the model that best fits 
the data, where good fit reflects that the specified latent variable structure adequately explains 
the observed covariances among the set of observed variables. 
 
Guided by the results of the exploratory factor analysis, as well as psychiatric and psychometric 
theory, we examined a series of confirmatory factor models to identify the factor solution that 
best explained the observed genetic covariances among the set of discovery phenotypes. As a 
baseline comparison throughout the analyses reported below, we contrasted each specified model 
with a single common factor model with the 11 indicators (i.e., a single latent dimension of 
genetic risk for externalizing).  
 
Model fit was assessed using preregistered thresholds for conventional indices in structural 
equation modeling: the model χ2 statistic, the Akaike information criterion (AIC), the 
comparative fit index (CFI), and the standardized root mean square residual (SRMR). All of 
these indices retain their standard interpretations within a Genomic SEM framework with the 
exception of the model χ2 statistic13. In large samples like those used in GWASs, χ2 tests are 
overpowered and likely to be significant. As such, the model χ2 statistic was used as a 
comparative measure of fit to evaluate competing models (akin to AIC), rather than as a measure 
of statistical significance. For CFI and SRMR, values greater than .90 and less than .08, 
respectively, were considered reflective of good model fit89. Results for the confirmatory factor 
analysis are summarized below and presented in Supplementary Table 7. 
 
Common factor model (11 indicators) 
As a baseline, we evaluated a common factor model with all 11 phenotypes operating as 
indicators for a single latent factor. While easily interpretable, this particular model exhibited 
poor fit, as indicated by model fit indices (χ2(44) = 8007.35, AIC = 8051.35, CFI = .662, SRMR 
= .161). This result is in accordance with the exploratory factor analysis that suggested that a 
single factor may not be optimal for approximating the observed covariance structure of the 11 
phenotypes. 
 
Correlated factors model (11 indicators) 
We next tested a three-factor model, a decision that was guided by the exploratory analysis, 
where each phenotype loaded onto three correlated latent factors based on their strongest loading 
observed in the exploratory factor analysis. No cross-loadings were estimated. Correlations 
between the latent factors were freely estimated. This simple correlated-factors model did not fit 
the data well, as indicated by model fit indices (χ2(41) = 6152.194, AIC = 6202.194, CFI = .741, 
SRMR = .126). We then evaluated a correlated factors model that allowed for cross-loadings, 
retaining all loadings with an absolute value ≥ .30 in the exploratory factor analysis. However, 
this model also showed suboptimal fit and did not meet our preregistered model fit criteria 
(χ2(39) = 2610.544, AIC = 2664.544, CFI = .891, SRMR = .089). 
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Bifactor model (11 indicators) 
We then tested a more complex bifactor model, in which the observed covariance of all 
phenotypes is modeled as general common factor, but residual variance among sets of indicators 
is modeled as specific factors. As these residual variance factors are conceptually orthogonal to 
one another, between-factor covariances were fixed to zero. Here, we modeled three latent 
factors: a general latent factor of externalizing with all phenotypes as indicators, a specific latent 
factor with group (ii) developmentally-relevant phenotypes as indicators, and a second specific 
latent factor with all other phenotypes in groups (i) and (iii) as indicators. This model also 
exhibited suboptimal fit per our pre-registered criteria (χ2(33) = 3016.033, AIC = 3082.033, CFI 
= .874, SRMR = .097), and the resulting factor structure would have been difficult to interpret. 
 
Revised common factor model (7 indicators) 
Finally, we evaluated a revised and more parsimonious common factor model that only included 
phenotypes with moderate-to-large (i.e., ≥ .50) loadings on the single latent factor estimated in 
the common factor model with 11 indicators. That is, we decided to exclude automobile speeding 
propensity (λ = 0.211), irritability (λ = 0.270), educational attainment (λ = 0.273), and alcohol 
consumption (λ = 0.373). We freely estimated correlations between the residual variance in age 
at first sexual intercourse and lifetime cannabis use, as well as problematic alcohol use and 
lifetime smoking initiation. These pairs of phenotypes were selected as they had notable loadings 
in the exploratory factor analysis (e.g., opposite direction of effect for F2 and cross loadings on 
F3), suggesting there was appreciable covariance not accounted for by a common factor with 
respect to these pairs. We found that this parsimonious model specification fit the data the best 
across all tested specifications, and it closely approximated the observed genetic covariance 
matrix (χ2(12) = 390.234, AIC = 422.234, CFI = .957, SRMR = .079). This model was selected 
as our final factor model, as it identified a latent genetic factor of externalizing psychopathology, 
offered an easily interpretable factor solution, and satisfied our pre-registered selection criteria 
on the basis of model fit indices, and we hereafter refer to it as “the latent genetic externalizing 
factor”, or simply, “the externalizing factor” (EXT).  

3.3.2 Genetic correlation 

We used Genomic SEMf to estimate genetic correlations between the latent genetic externalizing 
factor and 91 other preregistered phenotypes, which were broadly related to five domains: (a) 
risky behavior, (b) overall and reproductive health, (c) cognitive ability, (d) personality, and (e) 
socioeconomic status. We note that estimating genetic correlations with Genomic SEM is 
equivalent to LD Score regression when modeling relationships between observed phenotypes, 
and in particular, is more appropriate when modeling relationships that involve a latent genetic 
factor. This is due to the fact that Genomic SEM can directly model the covariance between a 
latent genetic factor and an exogenous phenotype rather than rely on the estimated SNP effects, 
which may or may not operate via the latent genetic factor (e.g., QSNP loci). The selection of a 

                                                
f In the late stages of the study, we were granted access to GWAS summary statistics on personality (the BIG 5) by 
23andMe for the purpose of estimating genetic correlations with EXT176. Because of limitations in the data sharing 
agreement, we could not analyze these summary statistics on the computing infrastructure used to estimate Genomic 
SEM. Therefore, we instead estimated genetic correlations between the externalizing GWAS (described below) and 
these five traits using standard LD Score regression24. For completeness, we display  
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priori phenotypes were pre-registered on the Open Science Framework (OSF, October 28, 2019). 
Genetic correlations results are presented in Supplementary Table 8 and Extended Data Fig. 1. 

3.4 Multivariate genome-wide association analyses  

Our main discovery analysis is a GWAS on the latent genetic externalizing factor, which we 
henceforth refer to as “the externalizing GWAS”. After identifying the confirmatory factor 
model that best explained the observed genetic covariances among the externalizing phenotypes, 
we estimated individual SNP effects on the latent externalizing factor. A brief overview of this 
multivariate GWAS method is provided below. The method is described in detail in ref.13. 
 
First, individual SNP effects and their squared standard errors and sampling covariances are 
included in the genetic covariance matrix (S) and the sampling covariance matrix (𝑉4). The 
genetic covariance matrix is expanded to include covariances between SNP 𝑗 and the latent 
genetic components of each phenotype, 𝑔: through  𝑔7. 
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The associated sampling covariance matrix, 𝑉4, then includes the following: (i) the sampling 
variances and sampling covariances of the SNP heritabilities and genetic covariances, (ii) the 
variance of SNP 𝑗 as derived from reference panel data, and (iii) the sampling covariances of the 
SNP-genotype covariances. Finally, 𝑚 models are estimated in order to obtain GWAS summary 
statistics for the latent factors, where 𝑚 is the number of SNPs present across all included 
summary statistics.  
 
We note that unit loading identification is used to set the scale of latent factors for models 
including SNP effects. This is a difference from the structural equation models without SNP 
effects, where unit variance identification is used to facilitate easy interpretation of factor 
loadings (for explanation, see Mallard and colleagues90). Here, we set the scale of the 
externalizing latent factor by fixing the factor loadings of number of sexual partners to one, as it 
had a strong loading on the common factor and moderate SNP heritability relative to the other 
phenotypes. Again, we note that this does not have any appreciable effect on the estimated SNP 
effects and their test statistics, it simply sets the scale of the latent genetic factor. 

3.4.1 Effective sample size 

We estimated the effective sample size for a given SNP in a latent factor model following the 
procedure described by Mallard and colleagues90. Just like the overall Genomic SEM framework 
(see above), this estimator is robust to sample overlap13. First, we assumed that the effect of SNP 
𝑗 follows: 
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𝛽T = 	
𝑍T

c𝑛T 	× 	2	 ×	𝑀𝐴𝐹T	U1 − 𝑀𝐴𝐹TV
 

 
Here, 𝑍T is the association test statistic, 𝑛T is the unknown effective sample size that we seek to 
estimate, and 𝑀𝐴𝐹T	is the minor allele frequency of SNP j. Note that the variance of SNP j (𝜎T%) 
is assumed to be 2	 × 	𝑀𝐴𝐹T	U1 − 𝑀𝐴𝐹TV. Therefore, if we know the association test statistic and 
minor allele frequency of SNP j, then we can estimate its effective sample size by solving for 𝑛T, 
which yields  
 

𝑛T =
(𝑍T/𝛽T)%

𝜎T%
 

 
As this formula can produce inflated estimates for SNPs with low MAF, we set a lower and 
upper MAF limit of 10% and 40%, respectively, when estimating effective N for the overall 
multivariate GWAS results (𝑁"##). As 𝑁"## is approximately equal to the mean 𝑛T for 𝑚 SNPs 
with a MAF between a and b, this is approximated as 
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We apply this formula to estimate the effective sample size for the latent externalizing factor, 
yielding an 𝑁"## of 1,492,085. 

3.4.2 Identifying near-independent and jointly associated lead SNPs  

To define near-independent “lead SNPs”, we applied a conventional “clumping” algorithm79, 
implemented in the PLINK software (version v1.90b6.13)74,91. The algorithm uses four 
parameters: a primary (two-sided test) P-value threshold (5×10–8), a secondary P-value threshold 
to drop weakly associated SNPs from the procedure (1×10–4), and an r2 threshold (0.1) together 
with a SNP window defined in kilobases (1,000,000 kb) to assign SNPs to near-independent 
“clumps”, each lead by the most strongly associated SNP, according to P value. By setting an 
extremely wide SNP window, we effectively consider only LD for determining independence 
between SNPs. LD was calculated with the main reference panel.  
 
Next, to investigate whether the lead SNPs were conditionally and jointly associated with the 
externalizing factor when considered simultaneously in the same model, we applied the standard 
method “multi-SNP-based conditional & joint association analysis using GWAS summary data” 
(COJO)92, as implemented in the GCTA software (version 1.93.1beta)93. This method is 
specifically developed for the scenario where it is infeasible to consider the SNPs jointly using 
individual-level data, and instead uses LD from a reference panel to derive conditional SNP 
effects.  Specifically, we applied the default step-wise model selection procedure on the lead 
SNPs identified with the clumping algorithm. The selection procedure is described in detail in 
ref.92, and it assumes that SNPs located further than 10 million base pairs from each other are in 
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linkage equilibrium (r2 = 0). We consider any SNPs identified by the COJO analysis as 
conditionally and jointly associated with the externalizing factor to be our main GWAS findings. 

3.5 Results of the multivariate externalizing GWAS 

With Genomic SEM, we estimated individual SNP effects for 6,132,068 SNPs, which is the 
intersection of SNPs available after quality control, on the latent genetic externalizing factor (Neff 
= 1,492,085). We display the GWAS results in a Manhattan plot in Fig. 1, and in a quantile-
quantile (Q-Q) plot in Extended Data Fig. 2. The externalizing GWAS showed strong 
association signal, with a mean χ2 and genomic inflation factor (λGC) of 2.98 and 2.22, 
respectively, when calculated with the ~6 million SNPs, and 3.114 and 2.337, respectively, when 
restricted to the 1,019,632 SNPs used in LD Score regression. We estimated the LD Score 
regression intercept and attenuation ratio to be 1.115 (SE = 0.019) and 0.054 (SE = 0.009), 
respectively, which suggests that almost all of the inflation we observed in the association test 
statistic is attributable to polygenicity rather than bias from population stratification13,23. 
 
The clumping algorithm identified 855 near-independent lead SNPs from the 58,896 SNPs that 
passed genome-wide significance (two-sided test P < 5×10–8). With COJO, we identified that 
579 of the 855 lead SNPs were conditionally and jointly associated, meaning they were 
significantly associated with EXT even after statistically adjusting for each other, as well as the 
other of the 855 lead SNPs. We consider these 579 conditionally and jointly associated SNPs to 
be our main GWAS findings (hereafter “the 579 EXT SNPs”). In Supplementary Table 9, we 
report the GWAS and COJO results for the 579 EXT SNPs, together with basic bioannotation 
with “functional mapping and annotation of genetic associations” (FUMA, ref.18), which is 
further described in Supplementary Information section 6. 
 
We investigated whether the 579 EXT SNPs were reported to be genome-wide significant in any 
of the input GWAS. We did that by identifying the smallest P value reported for each of the 579 
SNPs, as well as all correlated SNPs within their linkage disequilibrium (LD) regions (r2 > 0.1). 
The result of this lookup is reported in Supplementary Table 9B. We found that 121 (21%) of 
the 579 SNPs and SNPs in their LD regions were not genome-wide significant in any of the 
seven input GWAS, and 8 (1%) did not reach P < 1×10–5. Thus, the externalizing GWAS could 
identify SNP-associations that were not previously genome-wide significant in the input GWAS. 
Finally, we looked up the 579 SNPs and their LD regions (r2 > 0.1) in the GWAS Catalog and 
found that 41 (7%) could be considered novel GWAS findings, as they had never before been 
reported to be associated with any trait in the GWAS literature at suggestive significance (P < 
1×10–5; Supplementary Table 10). We further discuss the GWAS Catalog lookup in 
Supplementary Information section 6. 

3.5.1 QSNP heterogeneity tests 

Genomic SEM was used to perform SNP-level tests of heterogeneity (QSNP) to investigate 
whether each SNP had consistent, pleiotropic effects on the seven input phenotypes that 
effectively only operate via the shared genetic liability EXT13. To evaluate this potential 
heterogeneity in SNP effects, we estimated genome-wide QSNP statistics for each SNP in the 
multivariate GWAS, which are χ2-distributed test statistics. The null hypothesis of the QSNP test 
is that SNP effects on the constituent phenotypes are completely mediated via a common 
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pathway through the EXT factor, so a significant QSNP test indicates that a given SNP’s effects 
are better explained by trait-specific pathways independent of the EXT factor. In other words, in 
the absence of heterogeneity, it is expected that a given SNP’s effects on the input phenotypes 
should scale proportionally to the unstandardized factor loadings94. As described by Grotzinger 
and colleagues13, larger values for QSNP reflect a violation of the null hypothesis that a SNP is 
mediated through the latent factor. Genome-wide results for 6,107,583 QSNP tests for which the 
method converged are presented in a Manhattan plot in Fig. 1D and a Q-Q plot in Extended 
Data Fig. 2.  
 
We applied the clumping algorithm described above to the QSNP results and found 160 near-
independent genome-wide significant QSNP (two-sided test P < 5×10–8). The strongest and most 
salient example of a trait-specific association is SNP rs1229984 (two-sided QSNP P = 1.67×10–51; 
two-sided GWAS P with EXT = 0.022). This particular SNP, located in the gene ADH1B, is a 
known missense variant with a well-established role in alcohol metabolism95, and it is only 
associated with a single input phenotype—problematic alcohol use (two-sided GWAS = 
6.43×10–57). Notably, however, we found that 99% (571/579) of the EXT SNPs were not among 
the 10,665 genome-wide significant QSNP, and 7% (41/579) were significant QSNP at the less 
stringent threshold P < 0.05/579 (Supplementary Table 9). That is, there was strong evidence 
that the 579 EXT SNPs really capture a unitary dimension of genetic liability rather than simply 
representing an amalgamation of variants with divergent associations with the constituent 
phenotypes. We estimated mean χ2 and genomic inflation factor (λGC) of the QSNP results to be 
1.956 and 1.864, respectively, when calculated with the ~6 million SNPs, and 2.013 and 1.942, 
respectively, when restricted to the 1,016,650 SNPs used in LD Score regression. Thus, the QSNP 
analysis was sufficiently powered to identify substantial heterogeneity across the genome, but 
reassuringly, not with respect to the vast majority of our main findings. This aligns with the 
expectation of modelling a latent common factor with SEM, which is that the common factor 
should primarily identify shared variance and not the unique features of the model indicators. 
Finally, we estimated an LD Score regression intercept of 0.956 (SE = 0.013), which suggests 
that the inflation we observed in the QSNP test statistic is not attributable to bias from population 
stratification13,23. 

3.5.2 Visual inspection of scatter plots to explore heterogeneity 

To further investigate the QSNP findings, we followed the approach introduced by de la Fuente et 
al. (2021, ref. 94). The approach consists of generating a scatter plot of the relationship between a 
given SNP’s GWAS effects on the input phenotypes (scaled in standard deviation of the 
phenotype) against the respective phenotype’s unstandardized factor loadings on the common 
factor (“unstandardized” in that it is not standardized relative to the phenotype’s SNP 
heritability, but rather, in standard deviation units of the phenotypes itself). When QSNP is low, 
such that the EXT factor fully mediates the SNP effects on the individual GWAS phenotypes, 
this scatterplot is expected to tightly surround a regression line whose intercept passes through 
the origin. However, when QSNP is high, such that the EXT factor imperfectly mediates the SNP 
effects on the individual GWAS phenotypes, scatter is expected to depart substantially from this 
line. Visual inspection can be used as supplement to the formal QSNP test, in order to gauge the 
degree of heterogeneity, and to identify the specific GWAS phenotypes that contribute most to 
heterogeneity (the outliers). As a visual aid, it is recommended to display a fitted regression line 
from a weighted least squares regression of a SNP’s GWAS effects on the factor loadings, while 
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fixing the model intercept to zero (i.e., the expectation under the null of no heterogeneity), with 
weights equal to the inverse of the squared standard errors of the SNP effect sizes in order to 
account for differences in precision across the individual GWASs. It is important to note that in a 
Genomic SEM common factor model, the top hits will be driven—by definition—by the most 
precise, non-zero SNP effects on the individual EXT phenotypes that scale proportionally to the 
factor loadings and not by any outliers that deviate from expected proportionality (which instead 
drive the QSNP test). 
 
To illustrate the utility of this approach, we first generated this plot for SNP rs1229984 in the 
ADH1B gene, whose biological function in alcohol metabolism is well-known (Supplementary 
Data 1A), i.e., people with the T allele (fT ~ 3% in our main reference panel) drink, on average, 
less because they experience flushing and unpleasantness due to more rapid oxidation of ethanol 
to acetaldehyde54. This variant displayed the strongest QSNP (one-sided QSNP P = 1.67×10–51). As 
a reminder, rs1229984 was not found associated with EXT (two-sided P = 0.022), and it is only 
genome-wide significantly associated with a single input phenotype: problematic alcohol use 
(two-sided P = 6.43×10–57). Our visual inspection found that this SNP’s GWAS effects on the 
inputs are not proportional to their factor loadings, contrary to what would be expected by a 
model in which the SNP acts directly and exclusively via the EXT factor; i.e., we observe that 
most SNP effects are close to zero except the negative effect on ALCP that is a strong outlier and 
the effect on CANN that has a non-zero effect (P = 6.85×10–6) in the opposite direction relative 
to ALCP. Notably, the effect on ALCP is about 5 times larger than the largest effect we observed 
for any of the 579 EXT SNPs on the seven input phenotypes. We believe this SNP provides a test 
case of strong heterogeneity and general phenotype-specificity (while acknowledging that the 
inverse relationship between ALCP and CANN could be an interesting avenue for future 
research on a possible substitution effect). 
 
Next, we inspected the scatter plots for the 12 of the 579 EXT SNPs for which the QSNP test 
indicated the least support of heterogeneity (i.e., QSNP P > 0.95) (Supplementary Data 1B). The 
inspection found that for all but three SNPs, the GWAS effects line up almost perfectly 
according to the expected proportionality (and their 95% confidence intervals overlap with the 
fitted regression line). For the three remaining SNPs, the same consistent pattern is observed for 
all the phenotypes except ADHD (i.e., the input GWAS with the smallest N = 53,293, and thus 
the greatest likelihood for departure from the model expectations simply due to sampling 
variability). Thus, these 12 SNPs are examples of EXT SNPs that mostly satisfy the 
proportionality that would be expected by a model in which they act directly via the EXT factor.  
 
Thereafter, we examined the plots for the eight of the 579 EXT SNPs that are genome-wide 
significant QSNP (Supplementary Data 1C). In these plots, we observe that a few of the GWAS 
effects scale proportionally to the factor loadings, while they are spread more widely around the 
regression line than in the 12 examples of minimal heterogeneity. Also, for three of the eight 
SNPs, the direction of effect is mixed. Thus, in these plots we generally observe a mixture of 
proportional effects and outliers, which helps to explain why these SNPs are simultaneously 
genome-wide significant EXT SNPs and QSNP. Further, we investigated the plots for the 33 of the 
579 EXT SNPs that are not genome-wide significant QSNP but that are instead nominally 
significant in the QSNP test at the less conservative threshold P < 0.05/579 (Supplementary Data 
1D). In general, for these 33 SNPs, the GWAS effects follow the proportionality expected under 
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the factor model, with some dispersion around the regression line but not as much as was 
observed for the genome-wide significant QSNP. In a few cases, there is about one or two clear 
outlier phenotypes. Overall, these plots show that the eight or 41 EXT SNPs with significant 
heterogeneity (depending on the significance threshold) both partly conform and deviate from 
the proportionality expected under the factor model. 
 
Finally, we inspected the plots for the remaining 526 of the 579 EXT SNPs (Supplementary 
Data 2). The general pattern we observe is that the GWAS effects align well with the 
proportionality expected under the factor model, and that the regression line generally falls 
within their 95% confidence intervals. Thus, we conclude that the vast majority of the 579 EXT 
SNPs closely follow the proportionality expected under the factor model, and that the QSNP test 
could correctly identify a limited subset of EXT SNPs that deviate from the expectation. We are 
of course unable to definitively conclude that the true effect sizes for the EXT SNPs not 
displaying significant heterogeneity will conform perfectly to the factor model, but we can 
conclude from these results that the factor model provides a close and parsimonious 
approximation of the patterning of these SNP effects on the individual input phenotypes. 

3.5.3 Robustness analysis: leave-one-phenotype-out 

It has been shown that Genomic SEM is robust to wide imbalances in sample size across input 
summary statistics84. Nonetheless, it could be warranted to also show here that the genetic 
architecture of EXT that we estimated with Genomic SEM is not unduly driven by any particular 
phenotype, e.g., a phenotype with much larger N than the others. For that purpose, we specified 
seven leave-one-phenotype-out models that mirrored the revised common factor model (7 
indicators), but that each in turn excluded one of the seven input phenotypes. Similar to how we 
estimated genetic correlations between EXT and 91 other phenotypes (Supplementary 
Information section 3.3.2), we now used the summary statistics from our GWAS on EXT to 
estimate genetic correlations between EXT and the common factor in each of the seven leave-
one-phenotype-out specifications. Reassuringly, for all seven models, the genetic correlation 
with EXT was never found different from unity (rg ~ 0.984–0.999, SE ~ 0.028–0.035). Thus, this 
exercise shows that none of the seven phenotypes can be accused of solemnly driving the genetic 
architecture of EXT, and that the EXT factor is robust to excluding either of the seven phenotypes 
from the model. This finding is in accordance with our expectation about how a common factor 
SEM should work, as the method reduces dimensionality across the phenotypes by modeling 
variation that is shared across the model phenotypes, rather than phenotype-specific variation 
(which is instead captured by the phenotype-specific residual terms). At the same time, including 
GWAS with large N is important to attain considerable power in the multivariate GWAS. 
 

3.5.4 Robustness analysis: pair-wise binomial tests of sign concordance for the 579 
EXT SNPs as further characterization of heterogeneity 

During revision, as a complement to the QSNP test of heterogeneity, we performed an additional 
robustness analysis to investigate how well the direction of effect (i.e., the sign) aligned for 579 
EXT SNPs on the seven Genomic SEM input phenotypes. While the following analysis does not 
consider the precision of the inputs (which the QSNP test does), it may lend a more natural 
interpretation of heterogeneity that is separate from the Genomic SEM framework. We would 
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interpret a finding of great sign concordance as a signal that the EXT SNPs primarily index a 
unitary dimension of genetic externalizing liability, while weak sign concordance would signal 
that the 579 SNPs represent an amalgamation of variants with divergent effects on the seven 
phenotypes. Reassuringly, for 317 of the 579 EXT SNPs (54.7%), we observed perfect sign 
concordance (i.e., the same direction of effect on all seven phenotypes), and for 203 (35.1%), 47 
(8.1%), and 12 (2.1%) we observed either six, five, or four concordant effects, respectively 
(Supplementary Table 9B). Thus, for 520 of the 579 EXT SNPs (89.8%), we found a sign 
concordance of either six or seven effects. 
Next, for each pair-wise combination of the seven phenotypes, we performed binomial tests of 
the sign concordance for the 579 SNPs (against the null hypothesis of 50% concordance that is 
expected by chance). The results are reported in Supplementary Table 9B panel C. The 
strongest sign concordance was identified in the pair-wise comparisons between FSEX, NSEX, 
and SMOK (571–576 effects in the same direction, P < 3.1×10–157), and the weakest but still 
highly significant sign concordance was found for the least powered GWAS on ADHD and 
ALCP with 406–479 (P < 1.4×10–22) and 406–461 (P < 1.4×10–22) concordant effects, 
respectively, when compared with each other and the rest of the traits. Across all pair-wise 
comparisons, the sign concordance ranged between 70–99.4%, and the mean and median sign 
concordance was 494.25 (85.3%) and 480.5 (82.9%), respectively. In conclusion, the analysis of 
sign concordance for the 579 EXT SNPs found great overlap in the direction of effect on the 
seven phenotypes, which supports our interpretation that most or all of the EXT SNPs index a 
general externalizing liability. 
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4 Proxy-phenotype and quasi-replication analyses 
Section authors: Richard Karlsson Linnér 

In this section, we report a series of proxy-phenotype and quasi-replication analyses. The proxy-
phenotype method is a two-stage stage approach that leverages SNP associations identified in a 
well-powered, first-stage GWAS on a proxy phenotype (here, the externalizing GWAS), as 
empirically plausible candidates that can then be tested for association in independent, second-
stage GWAS samples on genetically correlated phenotypes79,96. The smaller number of 
hypotheses that are tested in the second stage yields an advantage in terms of statistical power 
compared to evaluating significance at the genome-wide significance threshold in the second-
stage GWAS samples. This approach has proven advantageous in situations where there is no 
independent, adequately-sized GWAS sample available to study a trait of interest directly, as 
well as to perform “quasi-replication” when no independent replication sample of the same 
phenotype exists79,96, the latter of which is the case for our current study. 
Here, the externalizing GWAS was used as the first-stage GWAS. To avoid overfitting, the 
second-stage GWAS samples were not part of the externalizing GWAS. As second-stage 
phenotypes, we studied two central externalizing traits for which we estimated moderate-to-
substantial genetic overlap with the externalizing GWAS: (1) antisocial behavior (ASB; rg = 
0.69, SE = 0.08) and (2) alcohol use disorder (AUD; rg = 0.52g, SE = 0.03). Notably, ASB was 
not an indicator phenotype in the Genomic SEM analyses while a GWAS on problematic alcohol 
use was an indicator. By performing this analysis, we aimed to (a) “quasi-replicate” the 579 lead 
SNPs identified in the Externalizing GWAS (see Supplementary Information section 3), and 
(b) perform an informed search to potentially identify novel SNPs enriched for association with 
the second-stage phenotypes. Because of the limited size of the second-stage GWAS to perform 
replication of each of the 579 SNPs, our quasi-replication is akin to an omnibus test that 
evaluates the SNPs jointly for enrichment of association with the second-stage GWAS. To our 
knowledge, as part of this analysis, we generated the largest meta-analysis of GWAS on 
antisocial behavior to date (N = 32,574), a trait for which there are still no genome-wide 
significant findings reported in the NHGRI-EBI GWAS Catalog (Buniello et al. 2018; accessed 
on March 31, 2020).  

4.1 Methods 

4.1.1 Auxiliary GWAS meta-analyses of the second-stage phenotypes 

We generated a meta-analysis of GWAS on ASB. First, we performed GWAS adjusted for age, 
sex, genetic PCs, and technical covariates in three hold-out cohorts: (1) Add Health (N = 4,884), 
(2) COGA (N = 6,323), and (3) PNC (N = 4,142). In Add Health, the ASB phenotype was 
defined as a continuous measure of the average of the rule-breaking/delinquency scale across 
four waves, and GWAS was performed with OLS in unrelated individuals. In COGA, the 

                                                
g Because of the lower-than-expected number of SNPs available in the MVP summary statistics (see below and 
Supplementary Information section 2), the LD Score regression correlation estimation was performed with only 
583,627 SNPs, which we believe may have attenuated the estimate. The genetic correlation between the 
externalizing GWAS with the PGC alcohol dependence GWAS was estimated to 0.76 (SE = 0.06), which we believe 
more accurately reflects the true genetic overlap between the two phenotypes. 
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phenotype was the maximum DSM-IV criteria count of either ASPD (adulthood, 18 or older) or 
CD (childhood, under age 18) interviews, as ASPD is only assessed in those 18 years and older, 
and GWAS was performed with linear mixed models. In PNC, ASB was defined as a composite 
score of conduct disorder symptoms, assessed with the Kiddie Schedule for Affective Disorders 
and Schizophrenia-Present and Lifetime Version (KSADS-PL), and GWAS was performed with 
OLS in unrelated individuals. After applying the QC protocol described in Supplementary 
Information section 2, we meta-analyzed the newly estimated GWAS together with an 
independent, published GWAS (N = 16,400) on ASB by Tielbeek et al.63. As COGA had 
contributed data to that previous GWAS, we made sure to exclude that particular subsample (N = 
1,379) from our internal GWAS in that cohort. In addition, we included association results for 
directly genotyped SNPs (imputed genotypes were not available) from one of the replication 
cohorts in Tielbeek et al., namely, the Michigan State University Twin Research study cohort 
(MSUTR; N = 825). The total sample size of the meta-analysis was 32,574. 
With respect to AUD, we analyzed results from a recently published GWAS in the Million 
Veterans Program (MVP; N = 202,004)55. Initially, we planned to use the MVP GWAS results 
for inclusion as an input in Genomic SEM. However, we found limited overlap of SNPs between 
MVP and SNPs in our Genomic SEM analyses. After QC in the MVP data (Supplementary 
Information section 2), only about 3.9 million SNPs remained (the number of SNPs in the other 
indicator GWAS ranged from 6.4–9.5 million). Therefore, in the third version of the analysis 
plan (OSF October 28, 2019), we amended a change to the study protocol and decided that the 
MVP GWAS would instead be used for the following proxy-phenotype and quasi-replication 
analyses on AUD. As a complement because of the limited number of available SNPs, we 
performed an ancillary meta-analysis of internal GWAS on alcohol use disorder/alcohol 
problems that included three hold-out cohorts: (1) Add Health (N = 4,166), (2) COGA (N = 
7,335), and (3) the UKB Problematic Alcohol Use Hold-out cohort (described in 
Supplementary Information section 2; N = 23,937). The total sample size of this ancillary 
meta-analysis on AUD was 34,426. 

4.1.2 Defining the first- and second-stage SNP associations 

In the second-stage GWAS results on ASB and AUD, we looked up the estimates for the 579 
jointly associated lead SNPs identified in the externalizing GWAS. The second-stage GWAS 
were all restricted to SNPs that satisfied at least 80% of the total sample size (the ancillary meta-
analysis of GWAS on AUD was restricted based on its own sample size and not the much larger 
sample size of the GWAS in MVP). 
With respect to ASB, we first checked whether the 579 SNPs themselves were immediately 
available in the second-stage GWAS results. For any SNPs that were missing, we attempted to 
identify suitable proxy SNPs in high LD (r2 > 0.8). In total, 500 of the 579 SNPs were 
immediately available, and we could identify 53 suitable proxies for the other 79 missing SNPs. 
Thus, the proxy-phenotype analysis of ASB used a total of 553 (k) SNPs (or their proxies) as 
“first-stage associations”. 
With respect to AUD, we prioritized lookups of the 579 SNPs, or suitable proxy SNPs (r2 > 0.8), 
in the larger MVP AUD GWAS. Only when a SNP was both missing and had no suitable proxy, 
did we perform lookups in the smaller, ancillary meta-analysis of GWAS on AUD. In total, 409 
of the 579 SNPs were directly available in the MVP GWAS on AUD, 39 could be proxied, and 
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the other 131 missing SNPs were immediately available in the ancillary meta-analysis. Thus, the 
proxy-phenotype analysis of AUD used a total of 579 (k) SNPs (or their proxies) as “first-stage 
associations”. 
Because we did not perform COJO analysis with the proxy SNPs, for all first-stage associations, 
we analyzed the direction of effect as estimated in the externalizing GWAS rather than the 
adjusted effect-size estimates from the COJO analysis. This decision will not influence the 
results as the correlation between the adjusted and non-adjusted effect sizes was >0.99 and the 
direction of effect was consistently the same. Before proceeding, we aligned the direction of 
effect for the second-stage lookups to match the effect-coded allele of the first-stage associations. 

4.1.3 Investigation of joint enrichment for association as quasi-replication 

As in previous studies9,79, we investigated whether the first-stage SNP associations with 
externalizing were more enriched for association with the second-stage phenotypes than an 
empirical null distribution based on a random sample of near-independent (r2 < 0.1) SNPs from 
the second-stage GWAS. We perform this test in comparison to an empirical null distribution 
because we expect that the second-stage phenotypes are polygenic, with many true associations 
that have yet to reach significance. Therefore, it would be inappropriate to test for enrichment 
against a uniform (null) P value distribution. For each of the k first-stage associations we looked 
up (k is 553 and 579 for antisocial behavior and alcohol use disorder, respectively), a sample of 
250 near-independent SNPs matched on MAF (± 1 percentage point) was drawn from the 
second-stage GWAS (with respect to AUD, all SNPs were drawn from the GWAS in MVP). 
Each set of SNPs were ranked according to P value. Then, as a joint test of whether the first-
stage SNPs are more enriched for association with the second-stage phenotypes than the 
background polygenic signal, we performed a non-parametric (one-sided) Mann-Whitney test of 
the null hypothesis that the P values of the k SNPs are from the same distribution as the 138,250 
and 144,750 SNPs that were drawn from the GWAS on antisocial behavior and alcohol use 
disorder, respectively. 

4.1.4 Other quasi-replication analyses 

Because the second-stage GWAS samples are too small to quasi-replicate each of the 579 SNPs 
at genome-wide significance, we had prespecified three tests with the objective to jointly quasi-
replicate the first-stage SNPs (or their proxies), akin to an omnibus test. The tests are reported in 
order of descending statistical power. First, the most powered test of sign concordance tested 
whether the direction of effect across the first- and second-stage GWAS were in greater 
concordance than what could be expected by chance. In the circumstance that the GWAS would 
be entirely spurious, the expectation is that 50% of the signs would be in concordance by chance. 
Secondly, we used the binomial test to evaluate whether a greater proportion of the first-stage 
associations were nominally significant (two-sided P < 0.05) in the second-stage GWAS than 
expected under the empirical null distribution. Thirdly, we report associations after Bonferroni 
correction for the k look-ups we conducted (two-sided P < 0.05/k). Any first-stage SNPs that 
satisfied that last criterion was considered to be “second-stage associations”. Any second-stage 
associations, including any SNPs in weak LD (r2 > 0.1), were looked up in the NHGRI-EBI 
GWAS Catalog for previously reported associations with the second-stage phenotype itself48, as 
well as related phenotypes. 
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4.2 Results 

The results of the proxy-phenotype analyses are reported in Supplementary Tables 11–12 and 
displayed in Extended Data Fig. 3. For ASB, the Mann-Whitney test rejected the null 
hypothesis of no enrichment (one-sided P = 1.10×10–5), which suggests that the first-stage 
associations identified in the externalizing GWAS are more enriched for association with this 
trait than the background polygenic signal of the second-stage GWAS. Out of 553 looked-up 
first-stage associations, 370 (66.9%) have concordant direction of effect (H0 = 276.5; two-sided 
binomial test P = 1.39×10–15), and 58 (10.5%) are nominally significant (P < 0.05), which is 
more than would be expected compared to the empirical null distribution (empirical H0 = 25.92 
(~4.7%); two-sided binomial test P = 1.64×10–8). These findings suggest that the externalizing 
GWAS is not entirely spurious and that it was possible to identify genetic signal that overlaps 
with a central externalizing trait, which itself was not an indicator in Genomic SEM. We 
identified one second-stage association on chromosome 5 at ~87.8 Mb that survived experiment-
wide Bonferroni correction (rs10044618; a proxy for rs6452785 at r2 = 0.851) with an ASB 
GWAS association P value of 8.15×10–5, which is more than what is expected under the null (H0 
= 0.05, two-sided binomial test P = 1.81×10–3). As there are no previously reported SNPs that 
are robustly associated with ASB in the GWAS Catalog, if this association would replicate in 
future studies, then this would be the first SNP association for ASB. The proxied second-stage 
association, rs6452785, has previously been reported to be associated with smoking initiation in 
the GWAS Catalog, and various SNPs in weak LD have been reported to be associated with a 
range of behavioral phenotypes, including depression, neuroticism, and educational attainment. 
For AUD, the Mann-Whitney test of joint enrichment strongly rejected the null hypothesis of no 
enrichment (one-sided P < 5.89×10–26). Out of 579 first-stage associations, 437 (75.4%) have 
concordant direction of effect (H0 = 289.5; two-sided binomial test P < 6.84×10–36), and 124 
SNPs (21.4%) are nominally significant (P < 0.05), which is more than would be expected 
compared to the empirical null distribution (empirical H0 = 38.0 (~6.6%); two-sided binomial 
test P = 1.87×10–31). Again, these results suggest that the externalizing GWAS is not entirely 
spurious and that our results could be advantageous for identifying genes associated with AUD.  
We identified four second-stage associations: (1) on chromosome 13 at ~27.9 Mb (rs1333351; 
second-stage P = 1.33×10–5), (2) on chromosome 11 at ~121.6 Mb (rs7945853; second-stage P = 
2.47×10–5), (3) on chromosome 3 at 157.9 Mb (rs1724679; second-stage P = 2.98×10–5), and (4) 
on chromosome 18 at ~53.0 Mb (rs72926932; second-stage P = 5.85×10–5), which is more than 
what is expected under the null (H0 = 0.05, two-sided binomial test P = 2.48×10–7). 
Neither of the four second-stage associations with AUD (nor any SNPs in weak LD, r2 > 0.1) are 
genome-wide significant in the GWAS in MVP. A SNP in LD (rs9512637, r2 = 0.83) with the 
first of the second-stage associations, rs1333351, has previously been reported to be associated 
with a trait cataloged under the label “alcoholism (heaviness of drinking)” at suggestive, but not 
genome-wide significance (reported P = 1×10–7). Similarly, a SNP in LD (rs9512637, r2 = 0.37) 
with the third of the second-stage associations, rs1724679, has previously been reported to be 
associated with drinks per week (reported P = 6×10–10).  Neither of the two remaining second-
stage associations, rs7945853 and rs72926932, nor any SNPs in weak LD have previously been 
reported to be associated with any alcohol-related phenotypes, while they have been found 
associated with other behavioral traits, such as smoking initiation and number of sexual partners. 
In summary, the proxy-phenotype analyses with AUD identified two second-stage associations 
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that have previously been identified with respect to alcohol-related phenotypes, and two second-
stage associations that are novel to the GWAS literature. 

 



5 Polygenic score analyses 
Section authors: Peter B. Barr, Richard Karlsson Linnér, Travis T. Mallard,  

Sandra Sanchez-Roige, and Ronald de Vlaming 

5.1 Introduction and summary 

In this section, we report a series of analyses that aim to evaluate the out-of-sample accuracy of 
an externalizing polygenic score, which was computed with weights from the externalizing 
GWAS. We define accuracy as the incremental R2 attained by adding the polygenic score to a 
regression model with baseline covariates, in accordance with previous efforts9,46. The analyses 
reported here can be used to assess the potential benefit of applying an externalizing polygenic 
score for risk stratification or for various empirical research applications97,98. For example, an 
accurate polygenic score can be used to explore the association of the externalizing factor with 
other traits in cross-trait analyses99, which we study below, or as a control variable in 
epidemiological research98. To evaluate whether the externalizing polygenic score is robust to 
bias from population stratification or other sources of bias that can lead to indirect associations 
between genes and complex traits, we also performed within-family analyses100.  
We generated polygenic scores using three methods, of which two were adjusted for linkage 
disequilibrium (LD): (1) PRS-CS101, (2) LDpred102, as well as (3) unadjusted polygenic scores 
(henceforth referred to as “classical polygenic scores”)103. We only generated scores using SNPs 
that overlap with the high-quality consensus genotype set defined by the HapMap 3 
Consortium104 for comparability across the three methods, and because PRS-CS imposes that 
restriction for computational feasibility. The main polygenic score analyses were performed in 
the following study cohorts, which were all excluded from the externalizing GWAS to prevent 
overfitting105: (a) Add Health106,107, (b) COGA108–110, (c) PNC111,112, and (d) the UKB Siblings 
Hold-out cohort (see Supplementary Information section 2). We also performed a phenome-
wide association study (PheWAS) of electronic health record data in the Vanderbilt University 
Medical Center biobank (BioVU), using the externalizing polygenic score. The presentation in 
the rest of the section is focused on the PRS-CS score, as the analyses with the LDpred score 
attained highly similar results (the complete LDpred results for Add Health, COGA, and UKB 
Siblings hold-out cohort are reported in Supplementary Tables 30–31, 34). 
As part of our replication strategy, we first report an investigation of how well the externalizing 
polygenic score could explain variation in a latent externalizing factor that was created in 
samples independent from the externalizing GWAS. In Add Health and COGA, we tested a 
phenotypic externalizing factor that corresponded one-to-one with the seven indicator 
phenotypes of the preferred Genomic SEM model, by constructing a latent factor from 
observations of these traits (Supplementary Table 27). The externalizing polygenic score was 
strongly associated with these latent externalizing factor scores and it captured a substantial 
proportion of their variation (Supplementary Table 28, R2 ~ 9–10.5%). When we evaluated its 
robustness in within-family analyses that exploit random genetic differences between sibling and 
which are therefore immune to population structure and environmental biases that vary between 
families. The standardized regression coefficient (𝛽r) of the score attenuated by 38% and 11.3% 
in within-family analyses in Add Health and COGA, respectively, while remaining statistically 
distinguishable from zero (Supplementary Table 33, two-sided P < 0.05). Considered together, 
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these findings suggest (a) that the externalizing GWAS results capture a substantial part of the 
variation in externalizing in independent data, (b) population structure, genetic nurture, and other 
between-family environmental factors that are correlated with genetic variation play a role, but 
the majority of the signal in our externalizing GWAS results is robust to these factors100. 
Next, we performed a series of exploratory cross-trait analyses with a variety of phenotypes 
broadly related to externalizing (Supplementary Tables 30–31, 34). Whenever possible, we 
sought to harmonize phenotypes across the study cohorts by using the same or similar 
observational measures or survey items. A few phenotypes of interest were not measured in all 
study cohorts, and thus, could only be analyzed in a subset of them. Overall, the externalizing 
polygenic score was significantly associated with almost all of the tested phenotypes across the 
behavioral, health, socioeconomic, and criminal justice domains. This finding suggests that 
genetic liability for externalizing is pervasive and is related to a wide range human behavior. 
When we focused on within-family analyses in the UKB Siblings Hold-out cohort 
(Supplementary Table 19), we found that the proportion of variance explained by the polygenic 
score decreased. However, for many of the phenotypes the estimated regression coefficient of the 
polygenic score remained statistically distinguishable from zero (P < 0.05). This result aligns 
with the aforementioned within-family findings in Add Health and COGA, which suggests that 
the signal in the externalizing polygenic scores is not just the result of overlooked population 
stratification while also suggesting that genetic nurture and other between-family environmental 
factors play an important role in shaping externalizing phenotypes. Overall, the cross-trait 
associations that we identified indicate that the random allotment of genetic externalizing 
liability between siblings has predominantly negative consequences for a range of important 
health and life outcomes. 
Finally, we evaluated the association between the externalizing polygenic score and broad-based 
medical outcomes by conducting a PheWAS in the Vanderbilt University Medical Center 
Biobank, BioVU (Supplementary Table 32). The PheWAS identified a variety of medical 
conditions that were associated with the externalizing polygenic score. These conditions cover a 
range of clinical diagnoses, including those related substance use disorders, mental disorders, 
respiratory disease, type 2 diabetes, and cardiovascular health. The PheWAS findings further 
emphasize the role played by the genetic liability towards externalizing in shaping negative 
health outcomes. 
The results section below contains further details.  

5.2 Methods 

5.2.1 Adjustment of GWAS effect sizes for linkage disequilibrium 

We applied two methods to perform LD-adjustment of the effect-size estimates that were used as 
polygenic score weights, as modeling LD between SNPs is known to increase the signal-to-noise 
ratio in polygenic scores97. The first is a recently developed method called “PRS-CS”101 (the 
October 20, 2019 software release), and the second is the often-applied method “LDpred”102 
(because of reported issues with a recent version, we used the older version 0.9.09). As the 
reference panel for estimating LD, PRS-CS used the 1000 Genomes European reference files 
distributed with the software and LDpred used the main reference panel (described in 
Supplementary Information section 2). Also, as the PRS-CS method is currently restricted to 
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the ~1.3 million SNPs in the high-quality consensus genotype set defined by the HapMap 3 
Consortium104,113, for comparability, we only generated polygenic scores using HapMap 3 SNPs. 
In both cases, we applied the default parameters of the respective software. For PRS-CS, this 
means that we applied the default Bayesian gamma-gamma prior of 1 and 0.5, and 1,000 Monte 
Carlo iterations with 500 burn-in iterations. LDpred has an important tuning parameter that 
defines the Gaussian mixture weight that represents the fraction of SNPs in the genome that are 
causal (p). As this parameter is not known for most phenotypes, the method developers 
recommend testing a range of values102. However, because we expect externalizing to be highly 
polygenic and because assuming an infinitesimal model has a closed-form, analytical solution, 
we simply chose to adjust the weights using the so-called “LDpred-inf” model. As is 
recommended102, we set the LDpred parameter “ld radius” to 340 (this parameter value was 
determined by dividing the 1,019,937 SNPs that overlap between the externalizing GWAS, the 
main reference panel, and the HapMap 3 genotype set, by 3,000). 

5.2.2 Polygenic scores 

We only computed polygenic scores in individuals of European ancestriesh. Polygenic scores 
were computed as the weighted sum of the effect-coded alleles for a given individual i: 

𝑆s = 	 l 𝛽rT𝑔sT

n

T	p	:

 

where 𝑆s is the polygenic score, 𝛽rT is the estimated additive effect of the effect-coded allele at 
SNP j, and 𝑔sT is the genotype at SNP j. For comparability, we computed all scores using the 
~1.3 million SNPs in the HapMap 3 consensus genotype set104. We performed all analyses below 
using each of the three scoring methods separately (i.e., never altogether in the same regression 
model). In our presentation, we highlight the results of the analyses with the PRS-CS polygenic 
scores, as this method performed consistently best out of the three methods, while the results 
across the methods were in overall concordance. The complete results are available upon request. 
The polygenic scores were standardized within each study cohort. 

5.2.3 Modeling a latent phenotypic externalizing factor in Add Health and COGA 

We modeled a latent phenotypic externalizing factor in Add Health and COGA that aimed to 
match the indicator phenotypes of the latent genetic externalizing factor as closely as possible 
(i.e., ADHD, age at first sexual intercourse, problematic alcohol use, lifetime smoking initiation, 
general risk tolerance, lifetime cannabis use, and number of sexual partners). In order to generate 
this latent factor, we fit confirmatory factor models (CFA) in Add Health (N = 15,107) and 
COGA (N = 16,857) by using all individuals, regardless of ancestry, with non-missing 
phenotypic data. We estimated all models using Mplus, which allows CFA models to contain 
indicators of different levels of measurement. To assess model fit and ensure that a single factor 
specification fit the data adequately, we used a variety of standard fit indices87 including the 
comparative fit index (CFI, values closer to 1 indicating better fit), the Tucker-Lewis index (TLI, 
                                                
hAncestry assignment was estimated from genetic data. See Braudt and Harris (2018) for full description of Add 
Health ancestry assignment. In COGA, ancestry was empirically assigned using the 1000 Genomes (phase 3) 
reference panel (YRI, CEU, JPT and CHB populations) as reference points 177. 
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values closer to 1 indicating better fit), the root mean square error of approximation (RMSEA, 
values less than .05 indicating good fit), and the standardized root mean squared residual 
(SRMR, values less than .08 indicating good fit). Supplementary Table 27 and Extended Data 
Fig. 9 present the fit statistics and factor loadings. Further, as it is not straight-forward in a latent 
variable framework to fit a large number of fixed-effect terms with few observations per term114, 
for the within-family analysis described below, we generated observed factor scores from the 
above CFA model (using the FSCORES function in Mplus). These observed factor scores are 
simple sums of the seven input phenotypes in the CFA model, weighted by their factor loading. 
Beyond testing the externalizing polygenic score for association with a latent externalizing 
factor, we also preregistered a variety of exploratory phenotypes for cross-trait analysis. The 
phenotype definitions are listed in Supplementary Table 29 and described in detail below. 
Phenotypes covered a variety of domains thought to be correlates and consequences of 
externalizing. For illustrative purposes, we categorized these exploratory phenotypes in the 
following way: (1) substance use initiation; (2) substance use disorders; (3) behavioral 
problems/disorders; (4) involvement with the criminal justice system; (5) sexual and 
reproductive health; and (6) socioeconomic outcomes.  

5.2.4 Main regression analysis 

In Add Health (N = 5,107), PNC (N = 4,172), and the UKB Siblings Hold-out cohort (N = 
39,640), for each tested phenotype (𝑌), we performed two regressions to estimate the accuracy of 
the polygenic score in explaining phenotypic variation. Specifically, we analyzed regression 
equations of the following form: 

Baseline model:  𝑌 = 𝑋𝛽 + 𝜀 

Polygenic score model:  𝑌 = 𝑆𝛾 + 𝑋𝛽 + 𝜀 

where 𝑆 and 𝑋 are matrices for the polygenic score and covariates with corresponding vectors of 
regression coefficients to be estimated, 𝛾 and 𝛽, respectively. The baseline model included 
covariates for sex, age, and genetic principal components (PCs), as well as genotyping batch 
when applicable. The accuracy of the externalizing polygenic score was defined as the difference 
in R2 (or pseudo-R2) between the two models, a measure that is sometimes called “incremental 
R2” (or ΔR2) 46. In order to demonstrate uncertainty in the incremental R2/pseudo-R2, we 
estimated 95% confidence intervals using percentile method bootstrapping over 1000 bootstrap 
samples. 
Our choice of statistical model and adjustment of standard errors depended on (1) the distribution 
of the phenotype and (2) the structure of the data in the study cohort (independent vs. clustered 
or genetically related observations). In Add Health and PNC, we used ordinary least squares 
(OLS) for continuous or ordinal outcomes, and logistic regression for binary outcomes. In the 
UKB Siblings Hold-out cohort we used OLS for continuous and ordinal outcomes, and the linear 
probability model (LPM) for binary outcomes. A motivation for applying LPM instead of 
logistic regression in the UKB Siblings Hold-out cohort is given below. With regards to OLS and 
LPM, we evaluated the traditionally defined coefficient of determination (R2). In the case of 
logistic regression, we evaluated Nagelkerke’s pseudo-R2 (115). 
In Add Health and PNC, the vast majority of the study participants are unrelated. Therefore, we 
analyzed one randomly drawn individual from any related pair (pairwise KING coefficient ≥ 
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0.0442), and thus, did not perform any statistical adjustment for clustering or family structure. In 
COGA (N = 7,483), which is a family-based cohort study with a variety of different pedigree 
structures108–110, to adjust for familial clustering we utilized linear mixed models for continuous 
and ordinal outcomes (LMM), or generalized linear mixed models (GLMM) with a logistic link 
function for binary outcomes (except in the within-family analysis, see below). That is, in COGA 
we estimated the following regression equations: 

Baseline LMM/GLMM model: 𝑌 = 𝑋𝛽 + 𝑍𝜇 + 𝜀 

Polygenic score LMM/GLMM model: 𝑌 = 𝑆𝛾 + 𝑋𝛽 + 𝑍𝜇 + 𝜀 

where we also included a design matrix 𝑍 with a binary indicator for each family unit and vector 
of unobserved random effects 𝜇 (specified as a variance component of the error term)116. For the 
LMM/GLMM models we estimated in COGA, we evaluated a different pseudo-R2 designed 
specifically for mixed models, described in refs. 
We did not adjust the standard errors in Add Health nor PNC, as we analyzed independent 
observations. Similarly, for COGA, since we used LMM/GLMM, we did not adjust the standard 
errors either (except in the within-family analysis, see below). To adjust the standard errors for 
the non-independence of the observations in the UKB Siblings Hold-out cohort, we estimated 
heteroskedasticity-consistent and cluster-robust standard errors, clustered at the family level. 

5.2.5 Within-family analysis in Add Health, COGA, and the UKB Siblings Hold-out  

To evaluate whether the externalizing polygenic score is robust to bias from population 
stratification or other unaccounted-for between-family differences, we performed within-family 
analyses in data on full siblings in Add Health, COGA, and the UKB Siblings Hold-out cohort, 
by comparing the baseline and polygenic score models described above. In this analysis, we 
studied subsamples of Add Health and COGA, restricted to participants for which we could 
observe at least one sibling pair in the data (the UKB Siblings Hold-out cohort was already 
restricted to full siblings). We identified 492 families in Add Health (2–4 siblings in each; 
Nsiblings = 994), and 621 families in COGA (2–8 siblings in each family; Nsiblings = 1,353).  
In Add Health and COGA, we applied OLS to test the externalizing polygenic score for 
association with a single outcome: the factor scores of the latent externalizing factor (a 
continuous variable), while adjusting for family fixed-effects (i.e., family-specific dummy 
variables)117,118. The reason for analyzing factor scores instead of the latent phenotype is that the 
CFA framework we used above to test the externalizing polygenic score for association is not 
suitable for modelling a large number of fixed-effect terms with few observations per term 114. 
Also, in contrast to the above, the within-family analysis in COGA did not model random family 
effects (𝜇) as we instead included fixed effects. Because of the family structure, we analyzed 
heteroskedasticity-consistent and cluster-robust standard errors, clustered at the family level. 
Once estimated, we compared the within-family coefficient (𝛽r) of the polygenic score with the 
coefficient estimated in an analogous model without the family fixed-effects. 
In the UKB Siblings Hold-out cohort, we performed an analogous within-family analysis with 
family fixed-effects. In this cohort, we tested the externalizing polygenic score for association 
with 37 phenotypes in up to 39,640 full siblings, divided across 19,252 family units. Some of the 
phenotypes are binary, and thus, should arguably be analyzed with e.g., logistic regression. 
However, estimating logistic regression with a very large number of dummy variables, each with 
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very few observations, can lead to severe bias (i.e., “incidental parameter problem”)116,119,120. 
Therefore, we instead applied linear probability models (LPM) for binary outcomes, which has 
its own drawbacks but is arguably more flexible for modelling a large number of fixed-effect 
terms121. Thus, for comparability, we estimated LPM in both the between- and within-family 
analysis for binary outcomes this cohort, again with heteroskedasticity-consistent and cluster-
robust standard errors. 

5.2.6 Derivation of standard errors for the difference in OLS coefficients estimated 
with and without family-specific fixed effects 

For statistical inference of the expected attenuation in effect of a polygenic score in the within-
family analysis in the UKB Siblings Hold-out cohort, we derived analytical standard errors for 
the difference in OLS coefficients estimated with and without family-specific fixed effects. A 
straightforward way to analyze this difference is to define the following initial linear model for 
an outcome 𝒚: 

𝒚 = 𝐗𝛽 + 𝐃𝛾 + 𝜀, and 

𝜀~𝒩(0, 𝜎~%𝐈]) 

where 𝐗 denotes the polygenic score and the aforementioned control variables, and where 𝐃 are 
the family-specific dummies (i.e., fixed effects) (excluding the dummy for one of the families, as 
𝐗 contains the model intercept). Moreover, 𝜀 denotes the error term, assumed to meet standard 
OLS requirements. Now, consider 𝛽r  as the vector of regression coefficients estimated with OLS, 
when regressing 𝒚 on both 𝐗 and 𝐃 jointly (i.e., when accounting for family fixed-effects). 
Furthermore, consider 𝛽r� as the estimates of 𝛽 obtained when we impose the constraint 𝛾 = 0 
(i.e., no fixed effects). 

To derive standard errors for the difference 𝛽r − 𝛽r�, our aim is to find the sampling distribution 
of this difference. By the Frisch-Waugh-Lovell theorem, the OLS estimator 𝛽r  can be written as 
follows: 

𝛽r = (𝐗�𝐌𝐃𝐗)–:𝐗�𝐌𝐃𝒚, where 

𝐌𝐃 = 𝐈 − 𝐃(𝐃�𝐃)�𝟏𝐃�. 

Similarly, the OLS estimator 𝛽r� can be written as: 

𝛽r� = (𝐗�𝐗)�:𝐗�𝒚. 

Now, the difference between these two estimators can be written as follows: 

𝛽r − 𝛽r� = [(𝐗�𝐌𝐃𝐗)–:𝐗�𝐌𝐃 − (𝐗�𝐗)�:𝐗�]𝒚. 

By substituting 𝒚 in this last expression with the initial linear model above, this difference can be 
re-written as: 

 𝛽r − 𝛽r� = [(𝐗�𝐌𝐃𝐗)–:𝐗�𝐌𝐃 − (𝐗�𝐗)�:𝐗�](𝐗𝛽 + 𝐃𝛾 + 𝜀) 

= −(𝐗�𝐗)�:𝐗�𝐃𝛾 + [(𝐗�𝐌𝐃𝐗)–:𝐗�𝐌𝐃 − (𝐗�𝐗)�:𝐗�]𝜀 

If we assume that the initial linear model is true and that 𝜀 meets classical OLS assumption, the 
latter equation implies that the difference has the following expectation and covariance matrix: 



 42 

𝔼�𝛽r − 𝛽r�� = −(𝐗�𝐗)�:𝐗�𝐃𝛾 

VarU𝛽r − 𝛽r�V = 𝜎~%[(𝐗�𝐌𝐃𝐗)–:𝐗�𝐌𝐃 − (𝐗�𝐗)�:𝐗�][(𝐗�𝐌𝐃𝐗)–:𝐗�𝐌𝐃 − (𝐗�𝐗)�:𝐗�]� 

= 𝜎~%[(𝐗�𝐌𝐃𝐗)–:𝐗�𝐌𝐃 − (𝐗�𝐗)�:𝐗�][𝐌𝐃𝐗(𝐗�𝐌𝐃𝐗)–: − 𝐗(𝐗�𝐗)�:] 

= 𝜎~%[(𝐗�𝐌𝐃𝐗)–:𝐗�𝐌𝐃𝐌𝐃𝐗(𝐗�𝐌𝐃𝐗)–: − (𝐗�𝐗)�:𝐗�𝐌𝐃𝐗(𝐗�𝐌𝐃𝐗)–: −	
(𝐗�𝐌𝐃𝐗)–:𝐗�𝐌𝐃𝐗(𝐗�𝐗)�: + (𝐗�𝐗)�:𝐗�𝐗(𝐗�𝐗)�: 

= 𝜎~%[(𝐗�𝐌𝐃𝐗)–: − (𝐗�𝐗)�: − (𝐗�𝐗)�: + (𝐗�𝐗)�:] 

= 𝜎~%[(𝐗�𝐌𝐃𝐗)–: − (𝐗�𝐗)�:]. 

In fact, under classical OLS assumptions with respect to 𝜀, the difference between the estimators 
under the initial linear model is distributed as: 

𝛽r − 𝛽r�~𝒩(−(𝐗�𝐗)�:𝐗�𝐃𝛾, 𝜎~%[(𝐗�𝐌𝐃𝐗)–: − (𝐗�𝐗)�:]) 

Once OLS has been applied to the initial linear model, obtaining a point estimate for 𝜎~% is 
straightforward, and so is calculation of [(𝐗�𝐌𝐃𝐗)–: − (𝐗�𝐗)�:] and of standard errors and 
confidence intervals for 𝛽r − 𝛽r�. 
Next, for each prediction phenotype in UKB, for the polygenic score (S), we calculated the 
standardized difference in OLS coefficients as 𝑍�������,� = (𝛽r4 − 𝛽r4,�)/𝑆𝐸�������,�, which is 
assumed to be a conventional Z-statistic following a normal distribution. As we want this 
difference to signify attenuation, and thus, be negative whenever 𝛽r4,� is greater in magnitude 
than 𝛽r4 no matter their sign, we reversed the sign of 𝑍�������,�  whenever both coefficients were 
negative (which they always were consistently). In Add Health and COGA, where we only 
predicted a phenotypic externalizing factor in within-family analysis, we evaluated 𝑍�������,� as is. 
In the UKB, we additionally compared the per-group mean of the standardized difference (i.e., �̅�, 
dropping the subscript) across the five outcome categories that we designated for the prediction 
phenotypes in UKB: (1) risky behavior, (2) overall and reproductive health, (3) cognitive ability, 
(4) personality, and (5) socioeconomic status. The standard error of �̅� was defined 
conventionally as 𝑆𝐷(�̅�)/√𝑘, where k is the number of phenotypes in a category, and confidence 
intervals were defined as �̅� ± 1.96 × 𝑆𝐸. 

5.2.7 Phenome-wide association study (PheWAS) in Bio VU 

BioVU is one of the largest biobanks in the United States, consisting of electronic health records 
from the Vanderbilt University Medical Center on ~250,000 patients spanning 1990 to 2017122. 
A subset of BioVU patients (N = 91,602) have been genotyped as part of various institutional 
and investigator-initiated projects on the Illumina MEGAEX platform, which contains more than 
2 million markers. Quality control (QC) and genotype imputation proceeded as previously 
described123. We computed the externalizing polygenic score in BioVU with the PRS-CS method 
only, in 66,915 genotyped individuals of European ancestry that are unrelated. Logistic 
regression was estimated for each of 1,335 case/control medical conditions to estimate the odds 
of each condition given the externalizing polygenic score, while adjusting for sex, median age of 
the longitudinal EHR measurements, and 10 genetic PCs. In BioVU, we did not estimate the 
baseline regression to evaluate ΔR2. The medical conditions included 42 infectious diseases, 117 
neoplasms, 118 endocrine/metabolic diseases, 42 hematopoietic diseases, 63 mental disorders, 68 
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neurological disorders, 85 sense organ disorders, 145 circulatory system disorders, 76 respiratory 
diseases, 125 digestive diseases, 120 genitourinary diseases, 31 pregnancy complications, 65 
dermatologic disorders, 91 musculoskeletal disorders, 34 congenital anomalies, 37 disease 
symptoms, and 76 injuries/poisonings. To assign case status, we applied the previously-used 
requisite of the presence of at least two International Classification of Disease (ICD) codes that 
mapped to a single so-called “phecode” (Phecode Map 1.2; 
https://phewascatalog.org/phecodes)124–126. We analyzed 1,335 phecodes for which we observed 
at least 100 cases, and evaluated statistical significance at the Bonferroni-corrected experiment-
wide significance threshold (P < 3.74×10–5). This threshold, however, is likely conservative 
because it assumes independence between phecodes, which is unlikely to hold true due to 
comorbidity. We ran PheWAS analyses using the PheWAS package v0.12 that is available for 
the R software environment127. 
When two GWAS samples are of sufficient size to allow for precise LD Score regression 
estimates, interpretation of the cross-trait intercept is a common way to identify sample 
overlap128, with the advantage that it does not jeopardize the privacy of the study participants and 
does not need cross-identification of individuals (which is typically prohibited). For that purpose, 
BioVU kindly shared an unpublished GWAS on an arbitrary trait: packed cell volume (N = 
65,907). We estimated its genetic correlation with EXT to be about –0.24 (SE = 0.04), which 
suggests that the cross-trait intercept can be used to detect sample overlap (as it implies non-zero 
phenotypic correlation). Next, the cross-trait intercept was precisely estimated and not 
distinguishable from zero, i.e., 0.0077 (SE = 0.0095), and thus, we found no detectable sample 
overlap between the discovery GWAS and BioVU. 

5.3 Phenotype definitions 

5.3.1 Externalizing factor in Add Health 

The phenotypes included for the latent externalizing factor in Add Health match the indicators 
from the genomic SEM model almost perfectly. Lifetime smoking initiation was constructed as a 
binary measure from the question “Have you ever smoked cigarettes regularly, that is, at least 1 
cigarette every day for 30 days?” If individuals indicated yes at any point in the four waves of 
data, they were coded as being a smoker. Individuals who answered no across all waves were 
coded as never being a smoker. Lifetime cannabis use was constructed in a similar manner to 
lifetime smoking initiation, from the question: “During your life, how many times have you used 
marijuana?” If participants indicated more than zero at any point in the four waves of data, they 
were coded as having used cannabis. Problematic alcohol use was constructed as an ordinal 
measure from the lifetime number of symptoms individuals endorsed for DSM-IV alcohol 
dependence or alcohol abuse criteria (range 0 to 11) at Wave IV when participants received the 
Composite International Diagnostic Interview-Substance Abuse Module (CIDI-SAM). ADHD in 
Add Health is measured at Wave III using a retrospective scale for ADHD symptoms. The 
retrospective ADHD scale contains 18 items with responses ranging from “never or rarely” (0) to 
“very often” (3) and an overall scale ranging from 0 to 54. Age at first sexual intercourse was 
constructed in a stepwise manner. First, we took the earliest reported age at first sexual 
intercourse across each wave (e.g. if a respondent reported age 14 at Wave I and age 15 at Wave 
IV, we used the Wave I response as it was closer to the event in time). Next, for those who never 
reported intercourse, we used Wave IV responses for age at first oral or anal intercourse with the 
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understanding that not all individuals may engage in opposite-sex sexual intercourse. Finally, we 
coded all individuals with responses below the age of 12 as missing, as this could reflect 
childhood sexual abuse rather than earlier onset of sexual behavior. Number of sexual partners 
was constructed from the sum of same and/or opposite sex partners an individual reported at the 
Wave IV interview. Because of the extreme positive skew, we set the maximum number of 
reported sexual partners at 250 (those reporting > 250 were recoded as 250) as this was the 
smallest maximum we could set without creating a large number of individuals at the maximum 
end of the response distribution. Finally, general risk tolerance was measured using a single item 
at Wave IV asking respondents how much do they agreed with the following statement: “I like to 
take risks.” Response ranged from “strongly disagree” (1) to “strongly agree” (5).  

5.3.2 Externalizing factor in COGA 

The phenotypes included for the latent externalizing factor in COGA also closely match the 
indicators from the genomic SEM model. COGA participants received the Semi-Structured 
Assessment for the Genetics of Alcoholism (SSAGA) 129. The initial COGA sample (alcohol 
dependent probands, their family members, and community comparison families) received the 
SSAGA interview once. A portion of this initial sample received a second SSAGA interview. In 
addition to the main sample, the COGA Prospective sample (children of the original sample) was 
followed longitudinally receiving a SSAGA every 2 years (currently 8 waves in total). The 
SSAGA is a diagnostic interview that covers a variety of psychiatric disorders, including DSM-
3R, IV and 5 diagnoses of alcohol, marijuana, cocaine, stimulants, sedatives, opioids, and 
tobacco use disorders. Additional diagnoses covered by SSAGA include attention-hyperactivity 
deficit disorder (ADHD), oppositional defiant disorder (ODD), conduct disorder (CD), and 
antisocial personality disorder (ASPD) (these were not included in the factor analysis but are 
studied below). Non-diagnostic sections also include demographics and use patterns of alcohol 
and drugs. Individuals were classified as yes on lifetime smoking initiation if they ever answered 
yes to “Over your lifetime, have you smoked a total of 100 cigarettes (smoked 5 or more 
packs)?” Individuals who answered no on the initial interview or across each point of data 
collection (for those who were interviewed more than once) were coded as never being a smoker. 
For lifetime cannabis use, participants were coded as having used cannabis if participants 
indicated yes to using cannabis at any point. Problematic alcohol use was constructed from the 
number of criteria individuals endorsed for DSM-5 alcohol use disorder (range 0 to 11). Because 
some COGA participants received more than one interview, we used the maximum value across 
all waves of participation. 
ADHD in COGA is measured using DSM-III-R/IV ADHD symptom counts. Age at first sexual 
intercourse was constructed in a manner similar to that in Add Health. We took the earliest 
reported age at first sexual intercourse across each wave (for those who interviewed more than 
once) or the reported age from a single item among those who received only one interview. 
Number of sexual partners was constructed from the number of partners an individual reported at 
the last interview in which they participated. We set the maximum number of reported sexual 
partners at 300, to overcome similar issues as mentioned in Add Health. Finally, general risk 
tolerance was measured using the Thrill and Adventure Seeking (TAS) subscale of the Sensation 
Seeking Scale, or SSS 130. The SSS provides respondents with 40 questions in which they are 
given two options to choose one of which best describes how they feel about themselves. For 
example, items in the TAS asked respondents to choose between options such as: “1) I often 
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wish I could be a mountain climber; or 2) I can't understand people who risk their necks climbing 
mountains.” Individuals who choose the riskier option for each question were coded as 1 and the 
others were coded 0. The TAS contains ten questions, with total scores ranging from 0 – 10 and 
higher scores indicating greater tolerance for risky behavior. 

5.3.3 Substance use 

Externalizing reflects a broad category of behaviors and psychiatric disorders that reflect a 
common genetic etiology11,27,131,132. Because traits in this category show such strong genetic 
overlap, we tested whether polygenic scores derived from the genomic SEM model were 
associated with a variety of substance use phenotypes. For substance use, we created measures of 
ever use for a variety of substances using each wave/interview in each sample. Respondents were 
classified as yes on lifetime smoking initiation if they responded yes to “Have you ever smoked 
cigarettes regularly, that is, at least 1 cigarette every day for 30 days?” at any point in Add 
Health, or yes to “Over your lifetime, have you smoked a total of 100 cigarettes (smoked 5 or 
more packs)?” at any point in COGA. The definition of lifetime smoking initiation and cigarettes 
per day in UKB has been described elsewhere9. Lifetime alcohol use was coded as yes if 
participants responded yes to “Have you had a drink of beer, wine, or liquor--not just a sip or 
taste of someone else's drink--more than 2 or 3 times in your life?” at any wave in Add Health or 
yes to either  “Have you ever had a drink of alcohol?” or “So, you have never had even one full 
drink of alcohol?” in COGA. In UKB, we used a previously generated measure of drinks per 
week from questions about how often respondents drink alcohol (ranging from 1 “daily or almost 
daily” to 6 “never”) and how much they consumed of various types of alcoholic beverages (wine, 
beer, spirits, other)9. For cannabis use, participants were coded as a yes on lifetime cannabis use 
in Add Health, COGA, and UKB if they responded yes to questions regarding ever using 
marijuana or hashish across any of the waves/interviews. Participants were classified as a 
lifetime opioid user (lifetime opioid use, COGA only) if they indicated opioids (among a list of 
many possible substances) for the question “Have you ever used any of these drugs to feel good 
or high, or to feel more active or alert? Or did you use any prescription drugs when they were not 
prescribed, or more than prescribed?” Finally, lifetime other substance use indicates whether 
participants have indicated they had ever used a variety of other illicit drugs or prescription 
medications outside their intended use. In Add Health this included ever using sedatives, 
tranquilizers, stimulants, painkillers, steroids, cocaine, crystal meth, and/or some other illicit 
substance. In COGA, the list of other substances included cocaine, stimulants, and/or sedatives. 

5.3.4 Substance use disorders 

In addition to substance use, we created measures of substance use disorders and/or problematic 
use, as the genetic overlap between use and problems is only partial133. Both Add Health and 
COGA contained some form of clinical interview129,134, while UKB included diagnoses from 
hospital records and self-reports from interviews. In UKB, we created a binary measure of 
problematic alcohol use from a combination of electronic health records and medical conditions 
disclosed during an interview, comprised of the following diagnoses: ICD-10 diagnoses (F10.X – 
Mental and behavioral disorders due to use of alcohol); ICD-9 diagnoses (291.X – Alcoholic 
psychoses, 303.X – Alcohol dependence syndrome, 305.0X – Nondependent abuse of alcohol), 
and verbal reports of alcohol dependence. In COGA and Add Health, we constructed measures 
substance use disorders that correspond to the substances as described above. In Add Health, 



 46 

alcohol use disorder (AUD) symptoms, cannabis use disorder (CUD) symptoms, and other 
substance use disorder (other SUD) symptoms were measured from the combined criteria counts 
of DSM-IV dependence and abuse of each of their corresponding substances. The total range of 
possible criteria ranged from 0 to 11. In COGA, alcohol use disorder symptoms, cannabis use 
disorder symptoms, opioid use disorder (OUD) symptoms, and other substance use disorder 
symptoms were measured from criteria counts of DSM-5 substance use disorder symptoms. 
These responses again ranged from 0 to 11. The only differences between combining abuse and 
dependence from DSM-IV criteria and using the DSM-5 criteria (which mostly reflects the 
combination of abuse and dependence into a single disorder) are in a single item. DSM-IV abuse 
contains the criteria of “[i]n the past year, have you more than once gotten arrested, been held at 
a police station, or had other legal problems because of your drinking?” which was not included 
in DSM-5. Instead, DSM-5 added, “[i]n the past year, have you wanted to drink so badly you 
couldn’t think of anything else.” Finally, in both Add Health and COGA, we used the 
Fagerstrom test for nicotine dependence (FTND) to assess nicotine dependence symptoms. The 
FTND assesses six criteria and has values ranging from 0 to 10. Overall, these measures of 
substance use disorders provide good coverage of problematic substance use. 

5.3.5 Behavioral problems/disorders 

Each holdout study cohort contains a variety of measures of antisocial and other risky behaviors. 
Measures for rule-breaking were constructed from an index of rule-breaking type behaviors. In 
Add Health, we took the average of standardized values across the four waves for items 
comprised of how often individuals reported engaging in the following behaviors over the 
previous 12 months: painting graffiti or signs on someone else’s property or in a public place 
(adolescence only), deliberately damaging others property, lying to their parents or guardians 
about where they had been or whom they were with (adolescence only), taking something from a 
store without paying for it (adolescence only), running away from home (adolescence only), 
driving a car without its owner’s permission (adolescence only), stealing something worth more 
than $50, stealing something worth less than $50, going into a house or building to steal 
something, selling marijuana or other drugs, acting loud, rowdy, or unruly in a public place, 
deliberately writing a bad check (adulthood only), using someone else’s credit card, bank card, 
or automatic teller card without their permission or knowledge (adulthood only), and 
buying/selling/holding stolen property (adulthood only). Responses ranged from “never” (0) to 
“5 or more times” (3). In COGA, we used respondent’s maximum value from the rule-breaking 
subscale of the Achenbach Self Report135 available in the COGA prospective sample only (N = 
1,699). The ASR asks respondents to describe their behavior over the past 6 and whether 
responses are “Not True” (0), “Somewhat or Sometimes True” (1), or “Very True or Often True” 
(2) and includes items such as “I damage or destroy things belonging to others”; “I break rules at 
work or elsewhere”; and “I steal.” We included previously described measures of automobile 
speeding propensity and general risk tolerance from UKB9. 
Aggression was measured compiled from a list of aggressive behaviors in both COGA and Add 
Health. In Add Health respondents whether or not in the past year they had: gotten into a 
physical fight, pulled a knife or gun on someone, shot or stabbed someone, used/threatened to 
use a weapon to get something from someone, and/or taken part in a group fight. Because 
respondents were not asked the specific question of whether or not they had been in a fight, we 
coded respondents as having been in a fight if they responded yes to either “In the past 12 
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months, how many times did you take part in a physical fight in which you were so badly injured 
that you were treated by a doctor or nurse?” or “In the past 12 months, how often did you hurt 
someone badly enough in a physical fight that he or she needed care from a doctor or nurse?” 
Responses were coded as yes/no and summed to create a count of 0-5 instances of these events. 
We used the maximum count across the four waves. In COGA we used the aggression subscale 
of the ASR (coded the same way as described above). This subscale included statements such as 
“I get in many fights”; “I physically attack people”; and “I threaten to hurt people.” 
Finally, we considered several other psychiatric disorders/traits relevant to the externalizing 
spectrum. Attention-deficit/hyperactivity disorder (ADHD) diagnosis is measured from a single 
item at Wave IV asking respondents if a health care provider ever told them that they had ADHD 
(Add Health only). ADHD symptoms were measured in both Add Health and COGA. In Add 
Health, participants were asked a series of retrospective questions related to ADHD during the 
Wave III interview. In COGA, respondents who completed the child version of the SSAGA 
(CSSAGA) during the initial data collection or were part of the Prospective sample received a 
section on ADHD. ADHD symptoms were measured as a total criterion count of either DSM-
IIIR or DSM-IV criteria for ADHD. In PNC, DSM-IVADHD was measured using a 
computerized version of the Kiddie-SADS Family Study Interview 136. In addition to ADHD we 
also have symptom counts of DSM-IV conduct disorder and oppositional defiant disorder in 
PNC. Finally conduct disorder/antisocial personality disorder (CD/ ASPD) symptoms (COGA 
only) were measured from the maximum DSM-IV criteria count of either ASPD (adulthood, 18 
or older) or CD (childhood, under age 18) interviews, as ASPD is only assessed in those 18 years 
and older. Because ASPD and CD have different numbers of criteria, CD criterion counts were 
proportionally scored in order to create a comparable range (0-7) with ASPD scores (e.g., a 
participant endorsing 7/15 CD criteria would receive a proportional score of 3.23/7). 

5.3.6 Involvement with the criminal justice system 

Involvement with the criminal justice system was captured by a variety of questions included in 
both Add Health and COGA. Ever arrested was measured from the questions “Have you ever 
been arrested?” at Wave IV in Add Health and “Have you ever been arrested for anything other 
than moving violations?” from the most recent interview in COGA. In addition, as to ever being 
arrested, times arrested was a count of the number of times one was arrested.  Ever convicted 
was measured using “Have you ever been convicted of or pled guilty to any charges other than a 
minor traffic violation?” in Add Health and “Have you ever been convicted of a felony?” in 
COGA. Finally, ever incarcerated was measured from questions asking “Have you ever spent 
time in a jail, prison, juvenile detention center or other correctional facility?” in Add Health and 
“Have you ever spent time in jail for something other than using drugs or alcohol?” in COGA. In 
each of these measures, individuals were coded as having been arrested, convicted, or 
incarcerated if they answered yes to any of the corresponding questions in their respective 
sample. 

5.3.7 Sexual and reproductive health behaviors 

In addition to problem behaviors and psychiatric conditions, other behaviors related to 
reproductive and sexual health show genetic overlap with other externalizing traits38,39. We 
therefore investigated the association between polygenic scores for externalizing and a variety of 
phenotype related to sexual and reproductive health. Number of sexual partners was measured 
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using two items in Add Health asking respondents the total number of male and/or female sexual 
partners with whom they had engaged in any type of sexual activity throughout their lives 
(retrospectively at Wave IV). In COGA and UKB, we used a single item that asked respondents 
to list the total number of sexual partners they had been with in their life (from the most recent 
interview on record in COGA). In Add Health, COGA, and UKB we used the first reported age 
(across all waves/interviews) at which respondents indicated they first engaged in sexual 
intercourse to measure age at first sexual intercourse. We coded all individuals with a reported 
age below 12 years old as missing to omit those who were potentially the victims of sexual 
abuse. Add Health also specifies the type of sexual behavior (vaginal, oral, and/or anal). We 
started with the first reported age at vaginal intercourse. If individual reported never having 
vaginal intercourse, we used the first reported age for oral or anal intercourse). Number of 
pregnancies comes from a single item in Wave IV of Add Health that asks respondents to report 
the number of times an individual has been pregnant (females) or gotten someone else pregnant 
(males). In COGA, a single question asked to report the number of pregnancies was asked only 
of female respondents. Number of live births comes from a single item asking respondents to 
report the number of pregnancies that have resulted in a live birth (females only in COGA). In 
UKB, we broke this measure item into three items: number of live births (females only), number 
of children fathered (males only), and number of children ever born (females and males 
combined). We also created measures of age at first birth (females only) as a continuous 
measure of age at the first reported birth and teenage conception (females only) as a binary 
measure of whether or not the respondent was a teenager when their first child was born in UKB. 
Next, in Add Health we measured lifetime sexually transmitted infection(s) (STI) from a checklist 
of STI’s in the Wave IV interview which included chlamydia, gonorrhea, trichomoniasis, 
syphilis, genital herpes, genital warts, hepatitis B, human papilloma virus, pelvic inflammatory 
disease, cervicitis or mucopurulent cervicitis, urethritis, vaginitis, HIV/AIDS, and/or any other 
STI. Individuals were coded as having a lifetime STI if they reported yes to any of these 
diagnoses. In COGA respondents were asked if they had ever been diagnosed with HIV/AIDS or 
any other STI (Phase IV only; N = 1,774). Finally, condom use (Add Health only) was measured 
from two questions that asked respondents whether they had used condoms and/or female 
condoms in the previous 12 months. 

5.3.8 Socioeconomic outcomes 

Because early manifestation of externalizing problems can influence educational trajectories and 
future socioeconomic attainment137–139, we examined the association between polygenic scores 
and outcomes related to these domains. Educational attainment was coded as the years of 
education. In Add Health, respondents were asked the highest grade they had achieved. When 
indicated, we used the exact number of years to achieve the corresponding grade (e.g. high 
school graduate = 12). Individuals who reported an educational level of 8th grade or less were 
coded as 8. In the case where the respondents reported completing some education at a given 
level and were still enrolled, we took the midpoint for the time between the previous educational 
milestone and the next (e.g. some college, still enrolled = 14). In COGA and UKB, responses 
were coded in a similar manner to Add Health. Personal income was only available in Add 
Health and was derived from reported past year earnings in whole dollars. For those who did not 
know the exact amount they earned, we used the midpoint for categories from a follow-up 
question that provided ranges of possible dollar amounts. Household income was coded as the 
midpoint of twelve categories ranging from “less than $5000 annually” to “$150,000 or more 
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annually” in Add Health (top category coded as $250,000/year, bottom category coded at 
$2,500/year), the midpoint of ten categories ranging from “$1-$9,999/year” to “$150,000 or 
more annually” in COGA (top category coded as $250,000/year, bottom category coded at 
$5,000/year), and the yearly household income reported in pounds per year in UKB. After 
recoding income measures into the midpoint of each category (in dollars/pounds per year), we 
performed a log10 transformation. Occupational prestige (Add Health only) was measured using 
the averaged Hauser and Warren Occupational Income and Occupational Education scales140. 
These scales were created from current or most recent occupation reported at Wave IV using the 
SOC2000 coding scheme for using pre 2000 occupational codes on post 2000 data141 which have 
been used in previously in Add Health142. Full time employment was measured using a single 
item (COGA only) that asked participants if they were currently employed in a full-time 
position. Fired from work was measured only of Add Health participants using a single item 
asking respondents “Thinking back over the period from 2001 to the previous year, how many 
times have you been fired, let go or laid off from a job?” Neighborhood disadvantage (ND) was 
constructed from the corresponding Wave I (childhood) and Wave IV (adulthood) Census-tract-
level data linked to Add Health participants’ home addresses used in prior research143. We coded 
the proportions of: 1) female-headed households, 2) individuals living below the poverty line, 3) 
individuals receiving public assistance, 4) adults with less than a high school education, and 5) 
adults who were unemployed into deciles and scored each tract on a scale of 1–10 
(corresponding to the decile in which the value fell). Finally, we summed each of these for 
possible scores ranging from 5-50 at each time point. We also created a measure of change in 
neighborhood disadvantage using the difference of Wave I and Wave IV measures of ND. In 
UKB, neighborhood conditions were measured using the Townsend Deprivation Index144; a local 
social deprivation score based census data (unemployment, non-car ownership, non-home 
ownership, and household overcrowding), where a higher score implies more social deprivation. 
The four housing variables in UKB: (1) owning outright; (2) owning with mortgage; (3) rent 
from local authority, local council, or housing association; (4) rent from private landlord or 
letting agency, were coded according to UKB data-field 680 and each of these four response 
categories was analyzed in a binary fashion against everyone else. We expected a negative 
association with owning outright (i.e., arguably an indicator of higher socioeconomic status), and 
positive associations with owning with mortgage or renting (i.e., arguably indicators of lower 
socioeconomic status relative to owning outright), to align with the expectation that genetic 
liability for externalizing is plausibly associated with lower lifetime socioeconomic success.  

5.3.9 General health and psychological outcomes 

Our UKB holdout sample included several measures related to general health and psychological 
well-being. For overall health, we used a measure of self-rated health ranging from 1) ‘Poor’ to 
4) ‘Excellent’, which is widely used as a valid measure of health status 145. For psychological 
well-being, we used a total neuroticism score, which is the sum of 12 yes/no items including: 
irritable person (“Are you an irritable person”), miserableness (“Do you ever feel 'just miserable' 
for no reason?”), nervous personality (“Would you call yourself a nervous person?”), often feel 
‘fed-up’ (“Do you often feel 'fed-up'?”), often feel lonely (“Do you often feel lonely?”), often 
mood swings (“Does your mood often go up and down?”), often troubled by feelings of guilt 
(“Are you often troubled by feelings of guilt?”), suffers from ‘nerves’ (“Do you suffer from 
'nerves'?”), tense or ‘high-strung’ (“Would you call yourself tense or 'highly strung'?”), worrier 
(“Are you a worrier?”), worries long after embarrassment (“Do you worry too long after an 
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embarrassing experience?”), feelings easily hurt (“Are your feelings easily hurt?”). In addition to 
the total score, we also focused on each individual item that went into the index. Finally, we 
included a measure of happiness (subjective well-being) from a single item asking “In general 
how happy are you?” ranging from 1) ‘Very unhappy’ to 6) ‘Extremely happy’. 

5.4 Results 

5.4.1 The latent externalizing phenotype in Add Health and COGA 

We first estimated the fit of the CFA model for the latent externalizing phenotype in Add Health 
and COGA to ensure that the phenotypes we used as indicators in Genomic SEM also measured 
a cohesive latent phenotype in these study cohorts. Supplementary Table 27 and Extended 
Data Fig. 9 present the fit statistics and factor loadings. A single factor model, analogous to the 
latent externalizing factor, demonstrated satisfactory fit in both study cohorts. A similar pattern 
can be seen when comparing the standardized parameter estimates across the models in each 
sample. The estimates for lifetime cannabis use were strongest in both models (βAdd Health = 0.84; 
βCOGA = 0.79), followed closely by lifetime smoking initiation (βAdd Health = 0.74; βCOGA = 0.63). 
The loadings for problematic alcohol use (βAdd Health = 0.42; βCOGA = 0.65), number of sexual 
partners (βAdd Health = 0.40; βCOGA = 0.46), and age at first sexual intercourse (βAdd Health = –0.43; 
βCOGA = –0.48) were similar across the study cohorts. Finally, the loadings for ADHD symptoms 
(βAdd Health = 0.27; βCOGA = 0.27) and general risk tolerance (βAdd Health = 0.21; βCOGA = 0.21) had 
the weakest loadings. The overall similarity in both the fit and factor loadings in these diverse 
samples with the preferred Genomic SEM model specification suggest that the indicators are 
indeed measuring a consistent latent concept of externalizing both at the phenotypic and genetic 
level. 
We report the results from testing the externalizing polygenic score for association with the 
latent externalizing factor in Fig. 2 and Supplementary Table 28. Among the three polygenic 
score methods, the polygenic score derived using PRS-CS had the strongest association 
(𝛽ro��	�"q\��= 0.328, ΔR2 = 10.5%; 𝛽r>��o = 0.304, ΔR2 = 8.9%), followed closely by the LDpred 
derived score (𝛽ro��	�"q\��  = 0.318, ΔR2 = 9.9%; 𝛽r>��o  = 0.291, ΔR2 = 8.3%). In both samples, 
the classical score (uncorrected for LD) was the least accurate, though its association with the 
latent externalizing phenotype was still similar to the LD-adjusted methods (𝛽ro��	�"q\��  = 0.253, 
ΔR2 = 6.3%, P = 2.6×10–56; 𝛽r>��o  = 0.273, ΔR2 = 6.5%, P = 2.8×10–65). These results strongly 
suggest that our polygenic scores generated with the externalizing GWAS capture a substantial 
proportion of variation in independent samples. Next, we compared the between- and within-
family estimates (Supplementary Table 33). The parameter estimates from the within-family 
model attenuated somewhat (between 11.3–39.3% depending on the study cohort and polygenic 
score method). At the same time, the within-family estimates remained statistically 
distinguishable from zero (P < 0.05). These results suggest that the externalizing GWAS is 
relatively robust to bias from population stratification and environmental confounds, while a 
small-to-moderate proportion of the association observed in the between-family analysis is likely 
to act via indirect genetic effects, such as genetic nurture. 
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5.4.2 Results of the exploratory analyses in Add Health and COGA 

We list the availability of the exploratory phenotypes across the study cohorts in Supplementary 
Table 29. The results of the cross-trait exploratory polygenic score analyses in Add Health and 
COGA are presented in Supplementary Tables 30A–B. In total, we tested the externalizing 
polygenic score for association with 34 different exploratory phenotypes, of which 22 were 
available in both Add Health and COGA. The externalizing polygenic scores was found 
significantly associated at P less than 0.05 with 31 of the phenotypes, but not with (a) number of 
live births and (b) number of pregnancies in COGA, nor (c) change in neighborhood 
disadvantage (childhood to adulthood) in Add Health. The direction of effect was consistent for 
all phenotypes that were available in both study cohorts. The following sections summarize the 
results in order of the illustrative categories (1) substance use initiation; (2) substance use 
disorders; (3) behavioral problems/disorders; (4) involvement with the criminal justice system; 
(5) sexual and reproductive health; and (6) socioeconomic outcomes. 
The externalizing polygenic score was found most strongly associated with phenotypes related to 
substance use initiation (ΔR2 ~ 1.09–7.04%). The association with lifetime smoking initiation was 
the strongest among all exploratory phenotypes (Add Health ΔR2 = 7.04%; COGA ΔR2 = 5.86%). 
Notably, the externalizing polygenic score captured more variation in lifetime smoking initiation 
than a polygenic score based on the previously largest genetic study on this phenotype47, which 
was used as an indicator GWAS in Genomic SEM. That study reported an incremental pseudo-
R2 of 4.2% in Add Health. Thus, this comparison suggests that Genomic SEM was able to 
increase the accuracy of polygenic scores with respect to an indicator phenotype, which was also 
the largest by far in terms of sample size. Next, strong associations were identified with lifetime 
cannabis use (Add Health ΔR2 = 4.91%; COGA ΔR2 = 2.83%), lifetime other substance use (Add 
Health ΔR2 = 3.28%; COGA ΔR2 = 3.95%), and lifetime opioid use (only measured in COGA, 
ΔR2 = 3.7%). The weakest association among the measures of substance use initiation, was 
identified with lifetime alcohol use (Add Health ΔR2 = 1.6%; COGA ΔR2 = 1.09%), which is 
likely reflection of the ubiquitous nature of this phenotype (95–96% of the Add Health and 
COGA participants report lifetime alcohol initiation). To put these effect sizes in to context, in 
Add Health, those with low polygenic scores (–1.5 SD) have a 0.17 projected probability of 
having ever used other illicit substances. Those with high polygenic scores (+1.5 SD) have 
projected probability of 0.37, a 2-fold increase in risk.  
When we consider the substance use disorder (SUDs) symptoms, we found smaller incremental 
R2. Nonetheless, we identified positive associations with alcohol use disorder symptoms (Add 
Health ΔR2 = 0.66%; COGA ΔR2 = 2.28%), cannabis use disorder symptoms (Add Health ΔR2 = 
0.35%; COGA ΔR2 = 1.17%), nicotine dependence symptoms (Add Health ΔR2 = 0.98%; COGA 
ΔR2 = 1.17%), opioid use disorder symptoms (only available in COGA, ΔR2 = 1.71%), and other 
substance use disorder symptoms (Add Health ΔR2 = 1.49%; COGA ΔR2 = 1.17%). Overall, our 
results suggest that the genetic liability for externalizing is strongly associated with increased 
levels of all the different substance use phenotypes that we tested, while many of these were not 
indicators in Genomic SEM, which emphasizes that the externalizing GWAS could be leveraged 
in future studies on various substance use or addiction phenotypes. Again, we see stark 
differences in those at the extremes of the polygenic score continuum for SUDs in COGA. Those 
at the top have ~1.5 more projected opioid use disorder symptoms than those at the bottom (+1.5 
SD projects 2.69 OUD symptoms; –1.5 SD projects 1.21 OUD symptoms).  
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We found that polygenic score was associated with a variety of behavioral problems/disorders. 
First, we identified substantial associations with externalizing psychopathology characterized by 
disinhibition: DSM-IV ASPD/CD symptoms in COGA (ΔR2 = 2.52%), ADHD symptoms (Add 
Health ΔR2 = 1.97%; COGA ΔR2 = 1.77%), and lifetime ADHD diagnosis (only available in Add 
Health ΔR2 = 1.48%). Next, the polygenic score was associated with both rule-breaking behavior 
(Add Health ΔR2 = 1.15%; COGA ΔR2 = 3.13%) and self-reported aggression (Add Health ΔR2 = 
2.31%; COGA ΔR2 = 1.99%). The stronger effect identified in COGA for rule-breaking behavior 
could reflect differences in the items used to measure these phenotypes across samples. These 
results suggest that the externalizing GWAS could tag genetic signal with core externalizing 
traits and psychopathology, and e.g., those at the top of the polygenic distribution (+1.5 SD) in 
COGA have a projected 4.45 ADHD symptoms while those at the bottom (–1.5 SD) have a 
projected 2.46 ADHD symptoms. 
The externalizing polygenic score was found to be associated with all tested measures of 
involvement with the criminal justice system, from arrest to incarceration, where higher levels of 
externalizing liability was associated with greater likelihood of experiencing these conditions. 
Specifically, the polygenic score was associated with ever arrested (Add Health ΔR2 = 2.45%; 
COGA ΔR2 = 3.11%), the number of times arrested (Add Health ΔR2 = 1.54%; COGA ΔR2 = 
0.45%), and with ever convicted (Add Health ΔR2 = 1.39%; COGA ΔR2 = 4.58%). The difference 
between Add Health and COGA in terms of ΔR2 for ever convicted likely reflects a difference in 
severity (see above). Briefly, in Add Health, the question covered multiple levels of conviction, 
including misdemeanor, felony, and/or being adjudicated as a juvenile, while in COGA the 
question asked specifically about being convicted of a felony (apparent in the difference in 
prevalence of being ever convicted, which is 13.78% and 3.31% in Add Health and COGA, 
respectively). The polygenic score was associated with ever incarcerated (Add Health ΔR2 = 
2.45%; COGA ΔR2 = 3.10%). In Add Health, these effect sizes translate into those with low 
polygenic scores (–1.5 SD) having a 0.18 projected probability of ever being arrested and those 
with high polygenic scores (+1.5 SD) having a projected probability of 0.36 of ever being 
arrested. (We remind the reader that these comparisons were only performed among individuals 
of European ancestry.)  
The fifth set of phenotypes we examined in our exploratory polygenic score analyses fall into the 
domain of sexual and reproductive health. Because previous work shows genetic overlap 
between many of the traits on the externalizing spectrum and sexual behaviors38,39, we expected 
the polygenic scores to be associated with multiple phenotypes in this category. The two 
phenotypes for which we estimated the strongest associations, age at first sexual intercourse 
(Add Health ΔR2 = 4.57%; COGA ΔR2 = 2.87%) and number of sexual partners (Add Health ΔR2 

= 1.49%; COGA ΔR2 = 1.06%) were indicators in the preferred Genomic SEM model. The 
polygenic score was also associated with greater number of pregnancies (Add Health ΔR2 = 
1.53%; COGA ΔR2 = 0.37%, P = 0.73), and greater number of live births (Add Health ΔR2 = 
0.29%; COGA ΔR2 = 0.0%, P = 0.86), but only in Add Health. The difference in effect sizes 
across the study cohorts could reflect the fact that in COGA, questions related to pregnancy and 
births were only asked to female participants, whereas in Add Health it was asked to all 
participants (for males, reflecting pregnancies of a partner). The polygenic score had a 
significant, but small association with having a lifetime sexually transmitted infection (Add 
Health ΔR2 = 0.6%; COGA ΔR2 = 0.91%). Finally, the polygenic score had a weak but significant 
association with reporting less condom use in the previous 12 months (Add Health ΔR2 = 0.17%; 
not measured in COGA). The projected age at first sexual intercourse in Add Health is 1.86 years 
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younger for those at the top of the polygenic distribution (+1.5 SD = 15.67) relative to those at 
the bottom (–1.5 SD = 17.53). Thus, the genetic liability for externalizing was associated with 
what could arguably be considered riskier sexual and reproductive behavior.  
The final set of exploratory phenotypes we tested for association in Add Health and COGA were 
categorized as socioeconomic measures. As childhood and adolescent externalizing is known to 
be associated with a lower educational trajectory and reduced future social mobility137–139, we 
expected the externalizing polygenic score to be negatively associated with measures in this 
category. The strongest association was found between the polygenic score and lower 
educational attainment (Add Health ΔR2 = 3.03%; COGA ΔR2 = 1.64%), followed by less 
occupational prestige (Add Health ΔR2 = 1.91%; not measured in COGA), lower personal 
income (Add Health ΔR2 = 1.00%), and lower household income (Add Health ΔR2 = 0.97%; 
COGA ΔR2 = 0.90%). In addition, the polygenic score was associated with other labor market 
measures, including reporting an increased number of times fired (Add Health ΔR2 = 1.24%) and 
fulltime employed to a less extent (COGA ΔR2 = 0.12%; not measured in Add Health), an index 
of neighborhood disadvantage143 in both childhood/adolescence (childhood neighborhood 
disadvantage; Add Health ΔR2 = 0.7%; not measured in COGA) and adulthood (adult 
neighborhood disadvantage; Add Health ΔR2 = 0.51%; not measured in COGA). The differences 
in projected household income between the top and bottom of the polygenic score distribution is 
approximately $10,000 (+1.5 SD = $44,640; –1.5 SD = $33,737). Overall, these findings align 
with the literature on the relationship between externalizing and socioeconomic status, 
suggesting that externalizing is generally associated with lower socioeconomic status.  

5.4.3 Results of the exploratory analyses in PNC 

We considered symptom counts of three psychiatric phenotypes related to behavioral 
problems/disorders in PNC: DSM-IV attention-deficit/hyperactivity disorder (ADHD), 
oppositional defiant disorder (ODD), and conduct disorder (CD), which are all considered 
central diagnoses with respect to externalizing psychopathology. The results are reported in 
Supplementary Table 31. The externalizing polygenic score was significantly associated with 
an increased number of symptoms for each of the three disorders, and the score explained a 
modest proportion of the variance in each measure (ADHD ΔR2 = 1.19%; CD ΔR2 = 3.51%; 
ODD ΔR2 = 1.92%). The results in PNC further increase our confidence in that the externalizing 
GWAS captures genetic signal of important not only for externalizing behaviors but also 
externalizing psychopathology. 

5.4.4 Results of the analyses in the UK Biobank Siblings Hold-out cohort 

Results for the analyses in the UKB Siblings Hold-out cohort are reported in Supplementary 
Table 34. In the between-family models, the externalizing polygenic score was found associated 
with 34 out of 37 tested phenotypes, with the exceptions of (1) cigarettes per day, (2) happiness 
(subjective well-being), and (3) suffers from “nerves”. Across the outcomes, greater genetic 
liability for externalizing was associated with more risky health behaviors (drinking, smoking, 
substance use initiation, etc.), lower socioeconomic status, and poorer mental, physical, and 
sexual health. The incremental R2 for these between-family associations ranged from tiny 
(feelings easily hurt, ΔR2 = 0.02%) to modest (lifetime smoking initiation, ΔR2 = 3.89%). The 
generally greater incremental R2 that we identified in Add Health, COGA, and PNC compared to 
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the UKB Siblings Hold-out cohort, is likely the results of the much richer and detailed 
phenotypic data available in the former three study cohorts.  
Of the 34 significant associations, 24 remain statistically distinguishable from zero (two-sided 
test P < 0.05) in the within-family analyses, which suggests that these associations are not 
entirely spurious. The phenotypes that did not remain associated in the within-family model 
included children fathered (males with children), feelings easily hurt, fluid intelligence, 
household income, live births (females), neuroticism score, often feels lonely, often troubled by 
feelings of guilt, problematic alcohol use, rent housing from private landlord or letting agency, 
suffer from nerves, and tense or highly strung. While the polygenic score remained associated 
with the majority of the phenotypes, comparison of the standardized difference in OLS 
coefficients across all the phenotypes found that the within-family estimates were on average 
smaller than the estimates without family fixed-effects, �̅� = −1.288 (95% CI: –1.42 to –1.15). 
When we evaluated this attenuation in each of the five phenotype categories, we found the 
largest attenuation in (3) cognitive ability (mean attenuation –6.55; 95% CI: –9.93 to –3.17), 
second-largest attenuation in (5) socioeconomic status (mean attenuation –2.43; 95% CI: –4.39 
to –0.48) and (2) overall and reproductive health (mean attenuation –2.20; 95% CI: –4.18 to –
0.21), while the attenuation was more modest in (4) personality (mean attenuation –0.35; 95% 
CI: –1.06 to 0.36). Conversely, the coefficients for (1) risky behavior were on average similar to 
the within-family coefficients (mean attenuation 0.08; 95% CI: –1.67 to 1.83), and this latter 
category also held the greatest number of coefficients that actually increased in magnitude rather 
than attenuated in within-family models. Thus, we conclude that within-family analysis in the 
UKB found stronger attenuation in cognitive ability, socioeconomic status outcomes, and overall 
and reproductive health, compared to personality and risky behavior. 

5.4.5 Results of the PheWAS in BioVU 

In BioVU, we tested 1,335 medical outcomes for association with the externalizing polygenic 
score, of which 84 were found significantly associated at Bonferroni-corrected experiment-wide 
significance (P < 3.27×10–5). We note that Bonferroni correction is overly conservative here 
because it ignores comorbidities between medical outcomes. The results are displayed in Fig. 4 
and Supplementary Table 32. As expected, many associations were identified in the mental 
disorder category (k = 14). Noteworthy associations in that group are tobacco use disorder (Ncases 
= 6,155, OR = 1.31, P = 1.65×10–82), substance addiction and disorders (Ncases = 2,062, OR = 
1.30, P = 2.46×10–32), alcoholism (Ncases = 1,020, OR = 1.29, P = 4.5×10–15), mood disorders 
(Ncases = 9,588, OR = 1.10, P = 1.03×10–14) and suicidal ideation or attempt (Ncases = 689, OR = 
1.20, P = 3.30×10–6), as well as bipolar disorder (Ncases = 1,565, OR = 1.18, P = 2.13×10–10) and 
major depressive disorder (Ncases = 3,990, OR = 1.101, P = 8.79×10–9). The score was not 
experiment-wide significantly associated with either ADHD (OR = 1.13, P = 5.91×10–5) or 
conduct disorders (OR = 1.15, P = 3.7×10–3), likely because of the relatively limited number of 
cases Ncases = 1,027 and Ncases = 426, respectively. However, both ADHD and conduct disorders 
were significant at the more liberal false-discovery rate of 0.05. Overall, we again find strong 
links with substance use disorders. Further, these findings are in concordance with the genetic 
correlations we estimated, which suggest that the genetic liability for externalizing may be partly 
shared with other major mental disorders. 
Next, the score was also associated with a range of different medical outcomes in various disease 
categories, including the circulatory system (k = 17), such as ischemic heart disease score (Ncases 
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= 9,991, OR = 1.10, P = 3.66×10–12); respiratory diseases (k = 17), such as chronic airway 
obstruction (Ncases = 4,436, OR = 1.17, P = 2.74×10–22); infectious diseases (k = 7), such as viral 
hepatitis C and HIV disease (Ncases = 1,195, OR = 1.39, P = 1.57×10–28; and Ncases = 677, OR = 
1.21, P = 2.11×10–6, respectively); endocrine/metabolic conditions (k = 7), such as type 2 
diabetes (Ncases = 8,959, OR = 1.05, P = 1.73×10–5, respectively); digestive diseases (k = 6), 
including cirrhosis of liver (e.g., Ncases = 1,928, OR = 1.21, P = 1.87×10–15); neurological (k = 2), 
such as chronic pain (Ncases = 3,172, OR = 1.15, P = 2.09×10–13); neoplasms (k = 5), including 
lung cancer (Ncases = 2,260, OR = 1.14, P = 9.05×10–10); and other categories including injuries 
and poisonings (k = 2), genitourinary (k = 4), hematopoietic (k = 4), musculoskeletal (k = 3), 
dermatologic (k = 1), sense organs (k = 4), and symptoms (k = 1).  
It is likely that the externalizing polygenic score is associated with many medical outcomes via a 
range of risky health behaviors. In particular, increased drinking and alcohol use disorders may 
explain the association with e.g., liver cirrhosis and injuries, while lifetime smoking initiation 
likely explains the associations with various neoplasms and respiratory diseases known to be 
caused by tobacco smoking, such as lung cancer, emphysema, and chronic airway obstruction. 
Notably, we identified associations with Viral hepatitis C (Ncases = 1,195, OR = 1.39, P = 
1.57×10–28) and HIV diagnosis (Ncases = 677, OR = 1.21, P = 2.11×10–6), which could   be due to 
riskier sexual behaviors or unsafe substance use practices, such as needle sharing. These findings 
align with both those in Add Health and COGA on number of sexual partners and age at first 
sexual intercourse, and in COGA on lifetime opioid use and OUD symptoms. In conclusion, 
these results display the importance of considering the influence of externalizing liability in 
shaping a range of negative health outcomes and substance use. 



6 Bioannotation 

Section authors: Sandra Sanchez-Roige, Richard Karlsson Linnér,  
 
In this section, we describe analyses investigating the biological function of the 579 jointly 
associated lead SNPs, as well as of all SNPs in the externalizing GWAS (Supplementary 
Information section 3), by using a variety of bioinformatics tools. Specifically, we applied 
functional genomics tools to annotate and prioritize putative regulatory variants, including 
functional annotations (i.e., CADD scores to identify highly deleterious SNPs), mapping 
annotations (i.e., eQTL SNP-gene expression association); as well as gene- and transcriptome-
based analyses (MAGMA, H-MAGMA, and S-PrediXcan). We thereafter characterized the 
findings of the latter three gene-based methods by performing an additional gene network and 
tissue enrichment analysis. Details of each method are presented below, and the results are 
reported in Supplementary Tables 9–10 and 13–26, and displayed in Extended Data Figs. 4–8.  

6.1  Methods 

6.1.1 Functional mapping and annotation with FUMA 

We used the method “functional mapping and annotation of genetic associations” (FUMA 
version 1.3.5e)18 to study the functional consequences of the 579 jointly associated lead SNPs 
(the results are reported in Supplementary Table 9), which included ANNOVAR categories 
(i.e., the functional consequence of SNPs on genes), Combined Annotation Dependent Depletion 
(CADD) scores (i.e., a measure of how deleterious a SNP is; greater than 12.37 is the  suggested 
threshold to classify a SNP as deleterious), RegulomeDB scores (i.e., a categorical score from 1a 
to 7 with 1a corresponding to the most biological evidence that the SNP is a regulatory element), 
mapping to expression quantitative trait loci (eQTLs are SNPs that influence gene expression; 
herein we focused on brain tissue eQTLs), and chromatin states (characterization of chromatin 
state; values range from 1 to 15 with values 1 to 7 referring to an open chromatin state). The 
sources of the external reference data used in these analyses are fully described in ref.18. 
 
With FUMA, we also performed lookups in the GWAS Catalog (version e96 2019-05-03, data 
analysis performed on 2020-03-25) to investigate whether the loci identified in the externalizing 
GWAS have previously been reported as associated with other traits at suggestive significance 
(two-sided P < 1×10–5). The GWAS Catalog compiles results from all published GWAS48. We 
extracted information from the GWAS Catalog for any of the 579 jointly associated lead SNPs 
(as well as for any SNPs in LD, r2 > 0.1) that were reported in the catalog (the results are 
reported in Supplementary Table 10). 

6.1.2 Gene-based, gene-set, and gene-property analyses with MAGMA 

We performed competitive gene-based association analyses using the genome-wide summary 
statistics from the externalizing GWAS by applying the method “multi-marker analysis of 
genomic annotation” (MAGMA v1.08)18,19. First, we assigned SNPs to genes based on physical 
position (gene-based analysis). SNPs were mapped to 18,235 protein-coding genes from 
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Ensembl build 85. This approach uses multiple regression methods to account for LD between 
SNPs. All variants within all protein-coding genes were tested, using default settings, with LD 
structure estimated using the 1000 Genomes European sample as a reference. We evaluated 
Bonferroni-corrected significance, adjusted for testing 18,235 genes (one-sided P < 2.74×10–6). 
The results are reported in Supplementary Table 13. 
 
Next, to study the relationship between the externalizing GWAS and sets of genes that share 
specific functional or biological characteristics, we performed a MAGMA gene-set analysis (the 
results are reported in Supplementary Table 14). We used 15,481 curated gene sets and Gene 
Ontology (GO) terms obtained from the Molecular Signatures Database (MsigDB version 7.0, 
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp)146, which characterize the biological 
processes, molecular function and cellular component of individual gene products. We evaluated 
Bonferroni-corrected significance, adjusted for testing 15,481 gene sets (one-sided P < 3.23×10–

6).  
 
Lastly, we performed a gene property analysis to test the relationships between 54 tissue-specific 
gene expression profiles and gene associations (the results are reported in Supplementary Table 
15). We performed this analysis using the average expression of genes per tissue type as a gene 
covariate. Gene expression values were log2 transformed average RPKM (Reads Per Kilobase 
Million) per tissue type (after replacing RPKM > 50 with 50) based on GTEx RNA-seq data. We 
applied Bonferroni correction (one-sided P < 9.26×10–4) to correct for testing 54 gene expression 
profiles. In addition, to examine the relationship between the externalizing GWAS and general 
developmental stages, we performed a MAGMA gene-set analysis using 11 developmental 
stages from brain samples obtained from BrainSpain147. The results of this analysis are reported 
in Supplementary Table 16. Further details on these methods are described in refs.18,19. 

6.1.3 Gene-based analysis using chromatin interaction profiles from human brain 
tissue with H-MAGMA 

We used an extension of MAGMA v1.08, “Hi-C coupled MAGMA” or “H-MAGMA” 20 
(version June 14, 2019), to assign non-coding (intergenic and intronic) SNPs to cognate genes 
based on their chromatin interactions. Exonic and promoter SNPs were assigned to genes based 
on physical position. We used four Hi-C datasets derived from adult brain148, fetal brain149, and 
iPSC derived neurons and astrocytes150 (all available for download: 
https://github.com/thewonlab/H-MAGMA). The results are reported in Supplementary Tables 
17–20. We evaluated Bonferroni corrected P-value thresholds, adjusted for multiple testing 
within each analysis (one-sided P < 9.84×10–7, P < 9.86×10–7, P < 9.84×10–7, and P < 9.83×10–7, 
respectively). 

6.1.4 Gene-based association using transcriptomic data with S-PrediXcan 

We used S-PrediXcan v0.6.222 to analyze gene expression levels in multiple brain tissues, and to 
test whether the gene expression correlated with the genetic liability of externalizing. The results 
are reported in Supplementary Table 21. We used pre-computed tissue weights from the 
Genotype-Tissue Expression (GTEx, v8) project database (https://www.gtexportal.org/) as the 
reference transcriptome dataset151. As input data, we used the summary statistics for the 
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externalizing GWAS, transcriptome tissue data, and covariance matrices of the SNPs within each 
gene model (based on HapMap SNP set; available to download at the PredictDB Data 
Repository, http://predictdb.org) from 13 brain tissues: anterior cingulate cortex, amygdala, 
caudate basal ganglia, cerebellar hemisphere, cerebellum, cortex, frontal cortex, hippocampus, 
hypothalamus, nucleus accumbens basal ganglia, putamen basal ganglia, spinal cord and 
substantia nigra. We used a transcriptome-wide significance threshold of P < 2.73×10–7, which is 
the Bonferroni-corrected threshold when adjusting for 13 tissues times 14,095 tested genes 
(183,235 gene-tissue pairs). 

6.1.1 Gene network analysis with parsimonious composite network (PCNet) and 
Specific Expression Analysis (SEA) with GTEx and BrainSpan reference tissues 

Lastly, we explored for genes and biological pathways that functionally overlap with the genes 
consistently found associated with externalizing by the three gene-based methods MAGMA, H-
MAGMA, and S-PrediXcan (i.e., 34 genes, see results section 6.2.2 below, or Supplementary 
Table 22), by performing an additional gene network and tissue enrichment analysis. The 
decision to restrict this analysis to the 34 genes found in our other gene-based analyses, hereafter 
the “34 consensus genes”, was to attain computational feasibility for the following gene network 
analysis, which generated an “externalizing network” that was subsequently tested in a tissue and 
brain region enrichment analysis described further below. 
First, starting with the gene network analysis, the so-called network neighborhood to the 34 
consensus genes was derived using a network propagation algorithm152, which in the abstract 
sense simulates how heat diffuses through a network by traveling through edges. The 
propagation was computed on the “parsimonious composite network” (PCNet) interactome, a 
curated repository that includes 21 commonly-used molecular interaction networks153. It has 
been demonstrated that these composite networks defined by PCNet have improved performance 
in recovering disease-relevant gene-sets compared to each individual network153. The PCNet 
reference data contained 32 of the 34 consensus genes (i.e., NRAP and TMEM110 were missing). 
Therefore, only “32 input genes” were used to initialize the propagation algorithm. The 
propagation process is described by the following equation154: 

𝐹� = 𝛼𝑊¡𝐹:�� + (1 − 𝛼)𝑌 

where 𝐹� is the heat vector at time t, 𝑌 is an indicator vector labeling the consensus nodes, 𝑊¡ is 
the column-normalized adjacency matrix representation of the network under study, and 𝛼 ∈
(0, 1) is the fraction of total heat retained at every time step. The network neighborhood is 
defined by all genes that had significantly higher propagation scores (Z > 3 from a 
hypergeometric test) compared to what would be expected by chance, defined by an empirical 
null distribution. The null distribution was constructed by random sampling of gene sets from all 
18,820 genes in the PCNet repository, with similar degree distributions to the 32 input genes, and 
then by running the propagation algorithm initialized by each of 5,000 such randomly sampled 
sets. The resulting gene network was named the “externalizing network” (see results below). The 
results are reported in Supplementary Tables 23–24. 
Second, the Specific Expression Analysis (SEA) method has been described in depth elsewhere 
(see ref. 155,156), and was used here to analyze the tissue specificity of the 381 genes assigned to 
the externalizing network (see the results below). The method has been implemented in the 
“Tissue Specific Expression Analysis (TSEA)” and “SEA across brain regions and development” 
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webtoolsi, for which the former uses expression reference data from the GTEx resource157 
(Supplementary Table 25), and the latter from the BrainSpan resource147 (Supplementary 
Table 26). Based on the expression reference data, genes were pre-assigned to tissue-specific 
gene-sets based on a specificity index (pSI), where a more stringent threshold excludes genes 
that overlap between different tissues. We only report results for the default threshold pSI < 0.05, 
as applying a more stringent threshold meant that less than 200 of the 381 genes in the 
externalizing network would have been mapped to tissues prior to testing for enrichment. 
Significant enrichment was evaluated at Benjamini-Hochberg adjusted P < 0.05.  

6.2 Results 

6.2.1 Results from the functional mapping and annotation with FUMA 

Out of the 579 jointly associated lead SNPs, 233 were intronic, 13 are exonic, 5 were in the 3’ 
UTR, and 3 were in the 5’ UTR; 106 variants were found significantly associated with an eQTL 
previously linked to expression in brain tissue; 60 were annotated with CADD scores greater 
than 12.37, indicating high probability of being deleterious (Supplementary Table 9). Several 
of the variants with CADD scores greater than 12.37 were located within genes previously 
related to drug use and risk tolerance, such as Cell Adhesion Molecule 2 (CADM2)9,59 (strongest 
signal rs993137, beta = 0.02, P = 4.61×10–53), Microtubule Associated Protein Tau 
(MAPT)/Corticotropin Releasing Hormone Receptor 1 (CRHR1)58,158 (rs2258689, beta = –0.01, 
P = 1.68×10–8); brain volume, such as Zic Family Member 4 (ZIC4)159 (rs2279829, beta = 0.01, 
P = 2.88×10–18). Other genes are less prominent in the previous literature, such as the Calcium 
Voltage-Gated Channel Subunit Alpha1 D (CACNA1D) gene (rs312480, beta = –0.01, P = 
2.14×10–10), or the gene Protein Kinase C And Kinase Substrate in Neurons 3 (PACSIN3; 
rs901750, beta = –0.01, P = 1.21×10–10). Interestingly, overexpression of PACSIN3 impairs 
internalization of Solute Carrier Family 2, Facilitated Glucose Transporter Member 1 
(SLC2A1)/Glucose Transporter 1 (GLUT1). In the brain, GLUT1 protein is involved in moving 
glucose, the brain’s major energy source, across the blood-brain barrier. Of note, the S-
PrediXcan analysis, reported next, also identified that more expression of PACSIN3 in the 
nucleus accumbens was significantly associated with externalizing (P = 1.46×10–6). In summary, 
and in alignment with other GWAS, most of the loci we identified in the externalizing GWAS 
are located outside of genes or are eQTLs, and thus, are likely to affect the phenotype by altering 
the amount or timing of protein production160. Notably, a substantial subset (~10%) of the 
identified loci had high CADD scores and these are therefore likely to directly change the type or 
structure of the gene products. 

6.2.2 Results from the analyses with MAGMA, H-MAGMA, and S-PrediXcan 

In order to identify associations at the level of genes rather than SNPs, we performed two types 
of gene-based analyses based on GWAS summary statistics: (1) MAGMA, which aggregates 
SNP effects at the gene level using positional annotations, and (2) S-PrediXcan, which uses 
reference data on expression quantitative-trait loci (eQTL) annotations to assign SNPs to genes. 
The summary statistics for the externalizing GWAS was the input used to compute gene-based P 
values. In the MAGMA analysis, a total of 928 genes were found associated at a Bonferroni-
                                                
i The webtools are available at: http://genetics.wustl.edu/jdlab/tsea/ and http://genetics.wustl.edu/jdlab/csea-tool-2/  
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corrected significance (one-sided P < 2.74×10–6) (Extended Data Fig. 4 and Supplementary 
Table 13), of which 244 have one or more genome-wide significant SNPs from the externalizing 
GWAS within their gene breakpoints (Supplementary Table 9). Next, the MAGMA gene-
property analysis identified that the externalizing GWAS was significantly (P < 9.26×10–4) 
enriched for association in multiple brain tissues, including the cerebellar hemisphere (P = 
1.10×10–22), cerebellum (P = 1.54×10–22) and frontal cortex BA9 (P = 2.66×10–19), as well as and 
pituitary gland tissues (P = 2.80×10–6). (Extended Data Fig. 5 and Supplementary Table 15). 
Interestingly, this “tissue-wide” analysis did not suggest any other tissues than those located in 
the brain. Intriguingly, out of 11 developmental stages, we found that genes were primarily 
expressed in the brain prenatally (Extended Data Fig. 6 and Supplementary Table 16). 
Additionally, the MAGMA gene-set analysis identified that sets relating to synaptic plasticity 
were significantly associated with externalizing. Out of the 15 significant gene-sets (P < 
3.23×10–6), 5 gene-sets involved neuron development/differentiation (e.g. neuron differentiation, 
P = 1.16×10–7), and 4 gene-sets involved synapses (e.g. synapse, P = 3.46×10–8) 
(Supplementary Table 14).  
By analyzing gene regulatory relationships using H-MAGMA, we identified significant 
associations in adult brain tissue (2,033 genes), fetal brain tissue (1,953 genes), iPSC-derived 
astrocytes (1,974 genes), and iPSC-derived neurons (1,973 genes; Supplementary Tables 17–
20). Using S-PrediXcan, we identified changes in predicted gene expression from 348 genes (of 
which 156 were also significant in the MAGMA analysis) in multiple brain regions as 
significantly associated with externalizing, at a Bonferroni-corrected significance threshold of P 
< 2.73×10–7 (Supplementary Table 21).  
We identified 34 genes that were consistently implicated by all methods we applied, as these 
have jointly associated SNPs within their breakpoints, and were consistently associated across 
the MAGMA, H-MAGMA (adult tissue) and S-PrediXcan analyses; these include CADM2, 
PACSIN3, ZIC4, MAPT, GABRA2. The full list of overlapping and unique genes is shown in the 
Supplementary Table 22. The number of implicated genes that overlap across the methods (i.e., 
34 genes) is displayed in a Venn diagram in Extended Data Fig. 7. In summary, the results of 
the analyses we performed with MAGMA, S-PrediXcan, and H-MAGMA all suggest that the 
externalizing GWAS is enriched for association with genetic variants that are involved in brain 
development, function, and structure. 

6.2.3 Results from the gene network analysis with parsimonious composite network 
(PCNet) and Specific Expression Analysis (SEA) with GTEx and BrainSpan data 

The PCNet method generated a network of 381 genes, which was named “the externalizing 
network” (Supplementary Table 23), which consists of the 32 input genes and 349 network 
neighborhood genes. Of the 349 neighborhood genes, reassuringly, 42 were also identified in at 
least one of the MAGMA, H-MAGMA, or S-PrediXcan analyses. Based on this network, we 
found that the largest connected component subgraph (i.e., the maximal set of genes and their 
interactions such that each pair of genes is connected by a path) was composed of the 32 input 
genes and 347 of the 349 neighborhood genes. In other words, two neighborhood genes 
(SOWAHD and TMEM150B) were disconnected from the larger network as they had no apparent 
interactions with the other 379 (i.e., they were connected to the network through non-network 
genes that did not meet the Z-score threshold for network proximity). These two genes were 
therefore excluded from the following multiscale systems mapping. 
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Next, we used the largest connected component subgraph as input in a multiscale community 
detection analysis in Cytoscape (version 3.8.2)161,162, using the Order Statistics Local 
Optimization Method (OSLOM) algorithm, to identify a multiscale systems map composed of 
groups of modular, highly interacting gene systems (Extended Data Fig. 8). The resulting 
“externalizing systems map” was composed of 12 modular gene systems, which were enriched 
for high densities of molecular interactions (Supplementary Table 24). Each gene system was 
annotated with the most significantly enriched gene ontology (GO) term, as determined by 
g:Profiler163. The systems map is organized modularly, with smaller, more specific systems 
(child systems) contained within those that are larger and more general (parent systems). For 
example, the two systems labelled “synapse” (C458, 71 genes) and “axon/neuron development” 
(C457, 61 genes) are child systems of the larger system C462 (no GO term available, 129 genes), 
such that all genes contained in the child systems are contained in the parent system. The parent 
systems (e.g., C462) represent larger and more general pathways than the child systems, and as 
such, does not have a clear descriptive gene ontology (GO) term. Five of the 12 modular gene 
systems were parent systems and only labeled with a unique system ID (i.e., C465, “the 
externalizing systems map” with 379 genes, C461 with 218 genes, C462 with 129 genes, C453 
with 22 genes, and C454 with 18 genes), which may represent previously uncharacterized 
pathways. The remaining seven child system were annotated with the following most significant 
GO terms: “cillium organization” (C452, 11 genes), “metalloaminopeptidase activity” (C455, 12 
genes) “axon/neuron development” (C457, 61 genes), “synapse” (C458, 71 genes), “transporter 
activity/RAN GTPase binding” (C460, 156 genes), “metalloaminopeptidase activity” (C455, 12 
genes), “membrane organization” (C456, 15 genes). 
Lastly, we applied the Specific Expression Analysis (SEA, version 1.1) “Tissue Specific 
Expression Analysis (TSEA, version 1.0)” and “SEA across brain regions and development” on 
the 381 genes in the PCNet externalizing network, of which 334 and 314 were available in the 
GTEx and BrainSpan reference data, respectively. Once the 381 genes were mapped to the pre-
assigned, tissue-specific gene-sets, the GTEx and BrainSpan analyses used 234 and 201 genes, 
respectively. The TSEA approach using GTEx reference data (Supplementary Table 25) 
identified significant enrichment in the gene-sets annotated as (a) “brain” (P = 7.27×10–17; FDR-
adjusted P = 1.82×10–15), (b) “nerve” (P = 1.24×10–5; FDR-adjusted P = 1.55×10–4), and (c) 
“pituitary” (P = 2.17×10–4; FDR-adjusted P = 0.002). Similarly, the SEA approach identified 
significant enrichment in brain-specific gene-sets annotated as (a) “Amygdala.Adolescence“ (P = 
0.003; FDR-adjusted P = 0.036), (b) “Cortex.Adolescence” (P = 0.004; FDR-adjusted P = 
0.042), (c) “Striatum.Adolescence” (P = 0.002; FDR-adjusted P = 0.036), (d) 
“Cerebellum.Early.Fetal” (P = 0.007; FDR-adjusted P = 0.05), € “Cortex.Early.Fetal” (P = 
0.003; FDR-adjusted P = 0.036), (f) “Cortex.Early.Mid.Fetal” (P = 5.63×10–6; FDR-adjusted P = 
3.38×10–4), (g) “Amygdala.Late.Mid.Fetal” (P = 0.006; FDR-adjusted P = 0.016), and (e) 
“Cortex.Late.Mid.Fetal” (P = 5.32×10–4; FDR-adjusted P = 0.016) (Supplementary Table 26). 
Overall, the tissue expression analysis found that the externalizing gene network is most strongly 
expressed in the brain, and in particular, during the fetal and adolescent developmental stage. 

6.2.4 Results from the GWAS Catalog lookup 

We report the results of the lookups of the 579 jointly associated SNPs (and any SNPs in LD, r2 
> 0.1) in Supplementary Table 10. In summary, we found that 538 of the SNPs or their 
correlates have previously been reported in the GWAS Catalog at suggestive significance (P < 
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1×10–5). Thus, we were able to identify 41 novel genetic loci that have previously not been 
reported for association with any trait in the GWAS literature. Virtually all of the reports we 
found overlap with multiple other phenotypes. Most of the previously reported associations are 
with traits related to the externalizing spectrum, including risk tolerance9, smoking9,47, alcohol 
consumption9,47,164, and cannabis use56,165, or other behavioral or mental traits. At the same time, 
we also found overlap with many seemingly unrelated traits, such as heel bone mineral 
density166, acne167, or blood protein levels168. Overall, these findings align with the genetic 
correlations we estimated, alongside with the known widespread pleiotropy in the human 
genome169, which together suggest great genetic overlap between the externalizing factor with a 
range of different complex traits. 

6.3 Discussion 

Broadly, the results of the performed bioinformatic analyses converge to reveal an abundance of 
pleiotropic genes that are known to play a major role in neurodevelopment. Of the 60 jointly 
associated SNPs with CADD scores greater than 12.37, gene- or transcriptome-based analyses 
identified genes that have previously been implicated in multiple studies, such as the brain-
derived neurotrophic factor (BDNF, P = 7.85×10–16), regulator of brain plasticity; RNA Binding 
Fox-1 Homolog 1 (RBFOX1, P = 6.40×10–17) and Netrin 1 Receptor genes (DCC, P = 3.58×10–

28), which were also significant in a recent cross-disorder GWAS meta-analysis by the 
Psychiatrics Genomics Consortium84, which appear to play a role in neuronal development. 
Gene- and transcriptome-based analyses also identified previously suggested genes that have 
been shown to be extremely pleiotropic, including Paired Basic Amino Acid Cleaving Enzyme 
(FURIN; involved in at least 40 other GWAS studies, including multiple psychiatric disorders170 
and the recent cross disorder84, cardiovascular disease171,172), Potassium Inwardly Rectifying 
Channel Subfamily J Member 3 (KCNJ3; involved in smoking, alcohol consumption, cognitive 
performance, among others47,173), Gamma-Aminobutyric Acid Type A Receptor Subunit Alpha 2 
(GABRA2; the major inhibitory neurotransmitter in the mammalian brain, suggested for virtually 
all major psychiatric disorders9,174), and Forkhead Box P2 (FOXP2)9,175.  
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cooperative funding from 23 other federal agencies and foundations. Add Health GWAS data 
were funded by NICHD Grants R01 HD073342 (Harris) and R01 HD060726 (Harris, Boardman, 
and McQueen). 

8.2.3 Vanderbilt University Medical Center’s BioVU 

We would like to thank Lea Davis for providing access to the Vanderbilt University Medical 
Center Biobank (BioVU). The dataset(s) used for the analyses described were obtained from 
BioVU which is supported by numerous sources: institutional funding, private agencies, and 
federal grants. These include the NIH funded Shared Instrumentation Grant S10RR025141; and 
CTSA grants UL1TR002243, UL1TR000445, and UL1RR024975. Genomic data are also 
supported by investigator-led projects that include U01HG004798, R01NS032830, 
RC2GM092618, P50GM115305, U01HG006378, U19HL065962, R01HD074711; and 
additional funding sources listed at https://victr.vumc.org/biovu-funding/. 

8.2.4 COGA 

COGA: The Collaborative Study on the Genetics of Alcoholism (COGA), Principal Investigators 
B. Porjesz, V. Hesselbrock, T. Foroud; Scientific Director, A. Agrawal; Translational Director, 
D. Dick, includes eleven different centers: University of Connecticut (V. Hesselbrock); Indiana 
University (H.J. Edenberg, T. Foroud,  J. Nurnberger Jr., Y. Liu); University of Iowa (S. 
Kuperman, J. Kramer); SUNY Downstate (B. Porjesz, J. Meyers, C. Kamarajan, A. Pandey); 
Washington University in St. Louis (L. Bierut, J. Rice, K. Bucholz, A. Agrawal); University of 
California at San Diego (M. Schuckit); Rutgers University (J. Tischfield, A. Brooks, R. Hart); 
The Children’s Hospital of Philadelphia, University of Pennsylvania (L. Almasy); Virginia 
Commonwealth University (D. Dick, J. Salvatore); Icahn School of Medicine at Mount Sinai (A. 
Goate, M. Kapoor, P. Slesinger); and Howard University (D. Scott). Other COGA collaborators 
include: L. Bauer (University of Connecticut); L. Wetherill, X. Xuei, D. Lai, S. O’Connor, M. 
Plawecki, S. Lourens (Indiana University); L. Acion (University of Iowa); G. Chan (University 
of Iowa; University of Connecticut); D.B. Chorlian, J. Zhang, S. Kinreich, G. Pandey (SUNY 
Downstate); M. Chao (Icahn School of Medicine at Mount Sinai); A. Anokhin, V. McCutcheon, 
S. Saccone (Washington University); F. Aliev, P. Barr (Virginia Commonwealth University); H. 
Chin and A. Parsian are the NIAAA Staff Collaborators. 
We continue to be inspired by our memories of Henri Begleiter and Theodore Reich, founding PI 
and Co-PI of COGA, and also owe a debt of gratitude to other past organizers of COGA, 
including Ting-Kai Li, P. Michael Conneally, Raymond Crowe, and Wendy Reich, for their 
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critical contributions. This national collaborative study is supported by NIH Grant 
U10AA008401 from the National Institute on Alcohol Abuse and Alcoholism (NIAAA) and the 
National Institute on Drug Abuse (NIDA). 

8.2.5 The Externalizing Consortium 

The Externalizing Consortium gratefully acknowledges Aysu Okbay and the SSGAC. Initial 
analyses by the Externalizing Consortium were funded by the National Institute of Alcohol 
Abuse and Alcoholism through an administrative supplement to R01AA015146 (DMD). 
Additional funding for investigator effort has been provided by K02AA018755, U10AA008401 
(COGA), and P50AA022537 (to DMD), a European Research Council Consolidator Grant 
(647648 EdGe, to PK). The study was classified as secondary research of de-identified subjects, 
and the study was awarded ethical approval by the internal review board (IRB) of Virginia 
Commonwealth University (VCU), with reference number HM20019386. 

8.2.6 The Psychiatric Genomics Consortium's Substance Use Disorders (PGC-SUD) 
working group 

The Psychiatric Genomics Consortium's Substance Use Disorders (PGC-SUD) working group is 
supported by MH109532 with funding from NIMH and NIDA. We gratefully acknowledge prior 
support from NIAAA and thank all our contributing investigators and study participants who 
make this research possible. 

8.2.7 UK10K Consortium 

This study makes use of data generated by the UK10K Consortium, derived from samples from 
the UK10K ALSPAC Cohort (EGAD00001000740) and the UK10K TwinsUK Cohort 
(EGAD00001000741). A full list of the investigators who contributed to the generation of the 
data is available from www.UK10K.org. Funding for UK10K was provided by the Wellcome 
Trust under award WT091310. 

8.2.8 UK Biobank (UKB) 

This research has been conducted using the UK Biobank Resource under Application Number 
40830 and 11425. Informed consent was obtained from UK Biobank subjects. 

8.2.9 Philadelphia Neurodevelopmental Cohort (PNC)  

This study used data from PNC, acquired through dbGaP (accession number phs000607.v3.p2). 
Support for the collection of the data for PNC was provided by grant RC2MH089983 awarded to 
Raquel Gur and RC2MH089924 awarded to Hakon Hakonarson. Subjects were recruited and 
genotyped through the Center for Applied Genomics (CAG) at The Children's Hospital in 
Philadelphia (CHOP). Phenotypic data collection occurred at the CAG/CHOP and at the Brain 
Behavior Laboratory, University of Pennsylvania. 


